1. Uvod

Cilj ove vježbe je uspostava numeričkog modela procjeđivanja ispod brane, kroz stijenu međuzrnske poroznosti. U varijantnim rješenjima hipotetske prostorne domene zadržavaju se konstantni rubni i početni uvjeti te se promatra utjecaj promjene širine pregradnog profila, dubine uranjanja zagata i debljine vodonosnog sloja na brzine i ukupne protoke procjeđivanja. Korišten je 2D model u vertikalnoj ravnini, u kojem je porozna sredina modelirana dvojako, kao izotropna i anizotropna. Razina tla i nepropusne podine usvojene su kao horizontalne. Korišten je numerički modeli zasnovan na metodologiji konačnih diferencija. Rezultati provedenih analiza pokazuju da anizotropija uzrokuje smanjenje procjednih količina u odnosnu na slučaj izotropne sredine pri istim dubinama uranjanja zagata.

Jedna od bitnih komponenti u gospodarenju vodama je i zadržavanje vodnog resursa u akumulacijskim prostorima. Obzirom na prirodne geološke granice kojima je omeđen akumulacijski prostor česta puta je potrebna dodatna intervencija na pregradnom profilu akumulacije u želji za smanjenjem proticajnih količina kroz poroznu sredinu ispod pregradnog profila. Jedna od takvih intervencija je i izvedba zagatnih stijena. Povećanjem dubine uranjanja zagatne stijene povećava se i put čestici tekućine od akumulcijskog prostora do nizvodnog "izlaznog" profila a što rezultira sa smanjenjem ukupne proticajne količine. S druge strane, povećanje dubine uranjanja zagata uzrokuje i povećanje investicijskih troškova.

U ovoj vježbi provedi se analiza utjecaja dubine uranjanja zagata, utjecaja debljine saturiranog vodonosnog sloja ispod akumulacijskog prostora i utjecaj anizotropije na procjedne količine ispod pregradnog profila akumulacije.

2. Prostorna domena problema i provedeni pokusi

Definicijska slika prostorne domene prikazana je na slici 2.1. Za dubine saturiranog vodonosnog sloja *H* od dna pregradnog profila do nepropusne horizontalne podine korištene su vrijednosti 30m i 70m. Analizirani raspon dubina uranjanja zagata *a* je od 0 do 60m, sa prirastom od 10m. Širina pregradnog profila *b* je usvojena sa konstantnom vrijednosti 30m. Rubovi modela, u smislu vertikalnih nepropusnih granica, postavljeni su 120m uzvodno od početka i 120m nizvodno od kraja pregradnog profila. Nomenklatura pokusa dana je i u tablici 1.

Prostorna domena diskretizirana je strukturiranom proračunskom mrežom s prostornim korakom $\Delta x=2m$ u horizontalnom smjeru i $\Delta y=0,5m$ u vertikalnom smjeru, uz izuzetak $\Delta x=\Delta y=0,5m$ u vertikali zagata.

Razine vodnog lica uzvodno i nizvodno od pregradnog profila su stacionarne sa međusobnom visinskom razlikom 10m. Koeficijenti filtracije u slučaju izotropnog vodonosnika usvojene su sa vrijednosti $k_x=k_y=0,001$ m/s, a u slučaju anizotropnog sa vrijednostima $k_x=0,001$ m/s; $k_y=0,1k_x$. U svim provedenim pokusima koeficijent poroznosti vodonosnika je usvojen sa vrijednosti $\varepsilon = 0,6$.

Na slici 2.1 naznačeni su i rubni uvjeti na modelskim granicama gdje je $\partial h/\partial n=0$ Neuman-ov homogeni rubni uvjet za tretman nepropusne granice a h=10m i h=0m Dirichlet-ovi rubni uvjet na otvorenim granicama modela.

Tablica 1 Nomenklatura pokusa

Broj pokusa	Н	b	а	С	k _x /k _y
	[m]	[m]	[m]	[m]	[/]
1,2,3,4	30	30	0, 10, 20, 25	120	1
5,6,7,8	30	30	0, 10, 20, 25	120	10
7,8,9	70	30	0, 10, 20,30,40,50,60	120	1
10,11,12	70	30	0, 10, 20,30,40,50,60	120	10

H – dubina saturiranog vodonosnog sloja (m)

a – dubina uranjanja zagata (m)

b – širina dna pregradnog profila (m)

c – širina dna uzvodno i nizvodno od pregradnog profila (m)

 k_x – Darcyjev koeficijent propusnosti u horizontalnom smjeru x (l/s)

 k_y – Darcyjev koeficijent propusnosti u vertikalnom smjeru y (l/s)

h – razina vodnog lica, Dirichletov rubni uvjet (m)

Slika 1 Definicijska skica prostorne domene sa varijabilnim geometrijskim obilježjima

3. Rezultati provedenih modelskih simulacija

Prikaz rezultata dan je grafički prema definicijskoj slici 3.1. Na daljnjim slikama se prikazuje raspodjela ekvipotencijala sa inkrementom od 10% obzirom na ukupnu razliku potencijala uzvodno i nizvodno od pregrade. Prikazana raspodjela potencijala na svim slikama odnosi se na slučaj maksimalne dubine uranjanja zagata (a=25m pri H=30m i a=60m pri H=70m). Na slikama su prikazani i dijagrami horizontalnih raspodjela vertikalne komponente brzine istjecanja v_Y u izlaznom profilu nakon pregrade. Također su priloženi i dijagrami ovisnosti bezdimenzionalnog omjera *i*-tog protoka procjeđivanja Q_i (pri a = 10, 20) i protoka procjeđivanja bez izvedbe zagata $Q_{a=0}$ (pri a=0m) o *i*-toj dubini uranjanja zagata a_i .

Slika 3.1 Definicijska skica za prikaz rezultata (plave linije u području porozne sredine su ekvipotencijale sa inkrementom 10% ukupne razlike potencijala)

Slika 3.2 Raspodjela brzina izlaznog strujanja na izlaznom profilu, raspodjela ekvipotencijala (10%) i bezdimenzionalni odnosi $Q_i/Q_{a=0}$ prema dubini uranjanja a_i/a_{max} , (H = 30m; b = 30m; $k_x = k_y$)

Slika 3.3 Raspodjela brzina izlaznog strujanja na izlaznom profilu, raspodjela ekvipotencijala (10%) i bezdimenzionalni odnosi $Q_i/Q_{a=0}$ prema dubini uranjanja a_i/a_{max} , (H = 30m; b = 30m; $k_x = 10 k_y$)

Slika 3.4 Raspodjela brzina izlaznog strujanja na izlaznom profilu, raspodjela ekvipotencijala (10%) i bezdimenzionalni odnosi $Q_i/Q_{a=0}$ prema dubini uranjanja a_i/a_{max} , (H = 70m; b = 30m; $k_x = k_y$)

Slika 3.5 Raspodjela brzina izlaznog strujanja na izlaznom profilu, raspodjela ekvipotencijala (10%) i bezdimenzionalni odnosi $Q_i/Q_{a=0}$ prema dubini uranjanja a_i/a_{max} , (H = 70m; b = 30m; $k_x = 10 k_y$)

Prikazane raspodjele vertikalnih komponenti brzine na izlaznom profilu ukazuju na generalni trend opadanja brzine i procjednih količina sa povećanjem dubine uranjanja zagata uz konstantnu širinu pregradnog profila, kako kroz izotropnu, tako i kroz anizotropnu sredinu. Odnosi smanjenja protjecanja i produljenja zagata nisu u linearnoj vezi.

Procjeđivanje je intenzivnije u izotropnoj nego u anizotropnoj sredini, ukoliko se na modelu koristi nepromijenjena geometrija i istovjetni rubni/početni uvjeti.

Rezultati bezdimenzionalnih odnosa između protoka bez izvedbe zagata $Q_{a=0}$ i sa analiziranim rasponom dubina uranjanja zagata Q_i ukazuju na linearno smanjenje ukupnih procjednih količina za slučaj anizotropne sredine pri dubini saturiranog vodonosnog sloja od H=30m. U slučaju izotropne sredine, pri istoj dubini H=30m, narušena je linearnost odnosa $Q_i/Q_{a=0}$ i a_i/a_{max} . Kod povećane dubine vodonosnog sloja H=70m, odnosi $Q_i/Q_{a=0}$ i a_i/a_{max} također nisu u linearnoj vezi.

Prema tome, veća učinkovitost izvedbe zagatnih stijena, u smislu smanjenja procjednih količina, može se očekivati u slučaju izraženije anizotropije i većih debljina vodonosnog sloja.

4. Korišteni numerički model

U provedbi numeričkih analiza korišten je 2D numerički model ASMWIN (Aquifer Simulation Model) namjenjen za analizu strujanja podzemnih voda i pronosa otopljene tvari. Prva verzija ASM-a izdana je 1989. i pokretana je pod programskim jezikom MS- DOS. Od toga se ASM kontinuirano poboljšavao i unapređivao a zadnja verzija ASM 6.0 radi pod operativnom sustavom MS- Windows. Model je baziran na metodi konačnih diferencija pri čemu se pronos može tretirati kroz klasičan Eulerov pristup ili po "random walk" metodi. Model podržava proračunsku mrežu sa maksimalno 150 x 150 ćelija i do 1000 vremenskih sekvenci u slučaju nestacionarnosti procesa. Diskretizirane jednadžbe procesa rješavaju se pomoću metode preduvjetnih konjugiranih gradijenata sa mogućnošću izbora dijagonalnih ili Cholesky preduvjeta. Za rješavanje stacionarnog toka koristiti se Marquardt- Levenberg algoritam. Model također omogućava upotrebu heterogenih polja transmisivnosti i koeficijenata filtracije.