# Some examples of static equivalency in space using descriptive geometry and Grassmann algebra 

Maja Baniček, Krešimir Fresl, Iva Kodrnja
Faculty of Civil Engineering, University of Zagreb, Croatia

## The problem - static equivalency

- In many static problems, it is convenient to replace existing force system with another, usually simpler, statically equivalent force system.

Form diagram
Force diagram


## Content:

1. The idea
2. Why we use descriptive geometry, Grassmann algebra and Plücker coordinates
3. Examples
4. Future work

## 1. The idea for geometric constructions



- Ropes stretched by applied forces, Stevin [1608]

The idea - The geometric construction is based on two principles:

1. principle:
2. principle:


## 2. Why we use descriptive geometry, Grassmann algebra and Plücker coordinates

- Descriptive geometry emphasizes "visual thinking" - essential for graphic statics.
- Grassman algebra translates operations of descriptive geometry into algebraic expressions and thereafter into a program code.
- Grassmann coordinates uniformly manage points, lines and planes in space.
- Plücker coordinates are a special case of Grassmann coordinates.


## Lines and forces expressed with Plücker coordinates

$$
I=\left[P_{1} P_{2}\right]=(\overbrace{\left(I_{01}, I_{02}, I_{03}, I_{23}, I_{31}, I_{12}\right)}^{\bar{I}} \quad \rightarrow \quad I_{\mathrm{ij}}=x_{\mathrm{i}} y_{\mathrm{j}}-x_{\mathrm{j}} y_{\mathrm{i}}
$$

Force expressed with six coordinates: $F=\left[P_{1} P_{2}\right]=\frac{f}{\left.4 f_{01}, f_{02}, f_{03}\right) f_{23}, f_{31}, f_{12} \rightarrow \quad \rightarrow \quad \rightarrow=0}$

Line as a span of two points:

Rhinoceros / Grasshopper / GhPython

3. Example 1 : • Replacing a single force with a force acting at the given point $A$ and a force lying in the given plane $\beta$


$$
\begin{aligned}
& \text { Form diagram Force diagram } \\
& A=\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \\
& \beta=\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right) \\
& S=\left(s_{01}, s_{02}, s_{03}, s_{23}, s_{31}, s_{12}\right)=\left(s_{0}, \bar{s}\right) \\
& B=O+s_{0} \\
& \sigma=A \wedge s \\
& r=\sigma \vee \beta=\left(r_{0}, r\right) \rightarrow r^{\prime}=O+r_{0} \\
& P=\beta \vee s \\
& C=r^{\prime} \vee p^{\prime} \\
& p=A \wedge P=\left(p_{0}, p\right) \rightarrow p^{\prime}=B+p_{0} \\
& \begin{array}{l}
\boldsymbol{\eta} \\
S_{1}=O \wedge C \\
=C \wedge B
\end{array}
\end{aligned}
$$

## 3. Example 2 :

- Replacing three skew forces with two forces acting along conjugate lines

Form diagram
Force diagram


## 3. Example 3 :

- Replacing two forces with a force acting at given point $A$ and a

Form diagram
Force diagram force lying in given plane $\beta$

Two special cases:

1) $A \rightarrow \square$
2) $\quad \beta \rightarrow \square$


## 3. Example 3 :

First special case -
$A$ is point at infinity

$$
\begin{gathered}
A=\left(0, a_{1}, a_{2}, a_{3}\right) \\
a=\left(a_{1}, a_{2}, a_{3}, 0,0,0\right)
\end{gathered}
$$

a || $p_{1}| | p_{2}$

a)

pile

b)

d)
(f)
3. Example 3 :

Second special case -
$\beta$ is plane at infinity

$$
\beta=\left(\beta_{0}, 0,0,0\right)
$$



## 3. Example 4 :

- Replacing two forces with six forces acting along edges of a tetrahedron

Form diagram

$\beta$

Force diagram


## 3. Example 5 :

- Replacing two forces with two forces of which one lies on a given line



## 3. Example 6 :

- Replacing a single force with three forces acting along generators of the same system of a regulus


4. Future work:


## 4. Future work:

Final result


## Thank you for your attention!

## Acknowledgements

This work has been supported in part by Croatian Science Foundation under the project IP-2014-09-2899.


## Questions

