

Faculty of Civil Engineering, University of Zagreb, Croatia Department of technical mechanics Chair for statics, dynamics and stability of structures Supported by Croatian Science Foundation

Shape optimization of compression structures

IASS 2016 Tokyo Spatial structures in 21st century

P. Gidak, M. Uroš, D. Lazarević

Basic idea for design process of compression structures

- tension compression analogy
- · kinematic constraints in force density method

iteration

tension-compression analogy

Basic idea for design process of compression structures

• vertical concentrated load in nodes

$$F_{i} = \frac{1}{2} \quad \ell_{i} + \ell_{j} + \ell_{k} + \ell_{l}$$

$$\underbrace{\ell_{i} \quad \frac{\ell_{i}}{2} \quad F_{i}}_{\ell_{i}} \underbrace{\ell_{k}}_{\ell_{i}} \quad \ell_{j}}_{\ell_{i}}$$

Definition of case study

• initial geometry: roof design of new stadium Kantrida in Rijeka, Croatia

- model A: target force in inner ring was set to 2100kN and in all other elements 150kN
- model B: elements of the same length (6.40m) while elements of inner ring have axial force 2000kN

Results of form finding

Results of form finding

Results of form finding

- Both models are smaller in height by 2m compering then with initial geometry
- Disposition of elements in model A is favorable from the point of construction (in model B accumulation of elements occur)

Structural analysis

- Comparisons between initial geometry (roof of new stadium Kantrida) and model A and B
- Observed parameters: displacement and distribution of internal forces
- Cross sections:
 - inner ring steel tube 813/25mm,
 - other elements tube 457/12,5mm.
- Rigid connections bending moments in the structural analysis after optimization

Structural analysis

- · Comparisons between initial geometry (roof of new stadium Kantrida) and model A and B
- · Observed parameters: displacement and distribution of internal forces
- Cross sections:
 - inner ring steel tube 813/25mm,
 - other elements tube 457/12,5mm.
- Rigid connections bending moments in the structural analysis after optimization

Structural analysis: displacements

Structural analysis: axial force

In future

- Implementation to solver: calculation of vertical concentrated load ٠ from the value of area between points
 - Optimisation from stability point of view ٠

THANK YOU

