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Chapter 16

Linear
Small Amplitude
Wave Theories

16-1 Basic Equations and Formulation
of a Surface Wave Problem

16-1.1 Notation and Continuity

The motion is defined with respect to the three axes in a
Cartesian coordinates system. OX, OY, and OZ are the
mutually perpendicular axes. The OZ axis is taken to be
vertical and positive upwards. Any point is defined by the
coordinates x, y, and z. The depth is defined by z = —d,
and is assumed to be constant (see Fig. 16-1). Viscosity
forces are neglected. The motion is assumed to be irrotation-
al and the fluid is incompressible.

carlV=0 or {(=n=¢(=0

(Note that # in this chapter will be used for the free surface
elevation and not for vorticity.) Also,
. ou Ov Ow
divV=0 or 6x+6y+ 37 =0

These assumptions result in a number of simplifications.

curl V.= 0 ensures the existence of a single-valued
velocity potential function ¢(x,y,z,t) from which the velocity
field can be derived. Thus, the potential function can
arbitrarily be defined as V = grad ¢ or V = —grad ¢. The
latter definition is used in this chapter, ie., u = —0¢/0x,
v = —0¢/0y, w = —0¢/0z. The velocity potential function
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has to be found from the continuity equation, the momen-
tum equation and the boundary conditions.

The continuity equation div V = 0 is expressed in terms
of ¢ by the equation V2¢ = 0. In Cartesian coordinates,
it is written as

%o 62_:,15 %¢

W+6y2+822—

16-1.2 The Momentum Equation

The momentum equation for an irrotational flow is given
by the following form of the Bernoulli equation (see Section
10-1.2). The minus sign in Equation 16-1 is due to the new
definition of ¢.

0 1
L I gz = f(t) (16-1)
ot 2
Local Convective  Pressure Gravity
inertia inertia term term
term term

In this equation, f(t) may depend on ¢ but not on the space
variables. The fact that the flow is assumed to be irrota-
tional means that the Bernoulli law is valid throughout the
fluid and not only along streamlines.

This equation is nonlinear because of the convective
inertia term. This term may be expressed as a function of the
potential function ¢ so that

1 1[[0¢\? 0\ 0 \?
ZVi=— _¢ + _d) + _d)
2 2| \ox dy 0z
The nonlinearity of the motion can be seen clearly. In the
case of very slow motion, the convective term is neglected
and the Bernoulli equation is written as
op p
~——+>+gz=f(t
at, e 1@
Periodic gravity wave theories often satisfy the condition
for slow motion with a fairly good degree of accuracy. The
corresponding solutions are mathematically exact when
the motion tends to be infinitely small.
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16-1.3 Boundary Conditions

16-1.3.1 At a fixed boundary, the fluid velocity is tangen-
tial to the boundary, that is, the normal component V, is
zero. In terms of velocity potential ¢, this condition is
written d¢/0n = 0. In particular on a horizontal bottom

_9
0z

=0

z=—d

z=—d

16-1.3.2 One of the difficulties encountered in determin-
ing the nature of wave motion is due to the fact that one of
the boundaries—the free surface—is unknown, except in
the case of infinitely small motion in which the free surface
is, at the beginning, assumed to be a horizontal line. Hence,
another unknown z = # appears in wave problems. If one
assumes that the free surface, in the most general case of a
three dimensional motion, is given by the equation
z = n(x,y,t), then the variation of z with respect to time ¢ is

d: _on  onds  ondy
dt ot oxdt  dydt
Introducing the values
dx 0P dy op
= U= —— —_— == - —
dt 0x dt oy
dz _ _ _0¢
dt z=n T oz .
the free surface equation becomes
| __n o) 09|
0z |;=y ot ox z=q 0X 0y |,=, 0y

This equation is nonlinear and is the kinematic condition
at the free surface.

Another equation—the dynamic equation—is given by
the Bernoulli equation in which the pressure p is considered
as constant (and equal to atmospheric pressure). Hence the
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free surface dynamic condition becomes

o 1[[(0d\* [0p\> [0¢\?
el )+ G () [ o

Thus, generally ¢ and 5 appear to be given by the
solution of V?¢ = 0 with two simultaneous nonlinear
boundary conditions at the free surface and a linear
boundary condition at the bottom

oo

Sl =0

z=—d

16-1.4 The Free Surface Condition in the
Case of Very Slow Motion

In the case of slow motion the Bernoulli equation

—%?+%+gz=f(t)
becomes
- % . +gn=0
at the free surface. The result is:
10¢
=g,

provided the function f(t) and any additive constant can
be included in the value of d¢/0t.

Since the motion is assumed to be infinitely small, #
may be written

10¢
g ot

z=0

This approximation leads to an error of the order of those
already done in neglecting the convective inertia term.
Consider the kinematic condition: dn/dx and dn/0y are
the components of the slope of the free surface and are
small as in the case of slow motion (see Fig. 16-2).
The nonlinear terms (0¢/0x)(dn/0x) and (0¢/0y)(0n/dy)
may be neglected. The normal component of the fluid
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Figure 16-2 Notation.

velocity at the free surface is now equal to the normal
velocity of the surface itself. This gives with sufficient
approximation

on _ 09

o 0z
n may now be easily eliminated from the dynamic and
kinematic conditions. The derivative of # with respect to t
in the dynamic condition gives

an 1 0%

o g ot
0n/0t can be eliminated by equating the two above equa-
tions. This yields:

b 1 22
DL =0
|:6z +g ot |-,

which is called the Cauchy—Poisson condition at the free
surface.

16-1.5 Formulation of a Surface Wave
Problem

16-1.5.1 Thus ¢ and #n appear to be solutions of the
following system:

z=0

z=0

1. Continuity
—d <z < yx,y.t)
—00 < X < 0
—00 <y< o0

Vip =0
no boundary



2. Fixed boundary 6¢/on = 0. In particular, at the

bottom
a¢
- =0
aZ z=—d
3. Free surface z = n(x,),t)
a. Kinematic condition:
¢ _on_ 09| on 0| On
0z|,y Ot 0x|;=y0X Oy |.—, 0y

b. Dynamic condition:

o  1[(0¢\* | (0d\* . (00 _
s G+ () ]

where f(t) is now included in d¢/0t. However,
even in this case, this last equation may be different
from zero, and equal to a given function f(x,y,t)
in the case of a disturbance created at the free
surface.

So formulated, the solution of the system of equations
presented in this section is still difficult to determine.
First, the equations are nonlinear, and second, the free
surface is unknown and is time-dependent.

16-1.5.2 In the case of slow motion, # may be eliminated
from the two free surface conditions resulting in the simple
Cauchy-Poisson condition

39 | o
Eﬁ*galﬂ—o

This leaves only one unknown, ¢, to be determined from

—-d<z<n=0
V2 =0 —00 < x < 00
—0<y< o
0¢ 0% o
_— =0 —_— _— =
0z ;= _4 and l:@tz 97, -0 0
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16-2 Method of Solutions
16-2.1 General Approach

16-2.1.1 When all the equations are homogeneous and
linear, the principle of superposition states that any number
of individual solutions may be superimposed to form new
functions which constitute solutions themselves. In a
linear equation ¢ and its derivatives occur only in the first
degree in every term. For example, if ¢; and ¢, are two
separate solutions, a¢, + b¢, is also a solution, a and b
being two arbitrary constants. This basic principle is very
important and will be used in the following sections.

16-2.1.2 Most of the solutions with which we are con-
cerned in this chapter are harmonic. This stems from the
fact that harmonic functions are quite natural solutions of
the basic equations. The solutions characterizing periodic
motions may be considered as superposition of harmonic
components.

The solution of ¢(x,y,z,t) is usually of the form

¢ = f(x,y,2) cos (kt + ¢€),

where k = 2n/T and T is the wave period. Another form
of the solution is

¢ = Re f(x,y,z)e"**?
Recall that

e'®*9 = cos (kt + ¢) + isin (kt + ¢)

“Re” means the real part of the function and ¢ is the
phase of ¢ with respect to the origin of time, ¢t = 0. In the
following, “Re” will be omitted and it is to be understood
that only the real parts of the mathematical expressions are
considered.

Introducing this form of ¢ in the free surface condition

1 0% o¢
gt a0
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gives
k* 0
AL

16-2.1.3 If it is assumed that ¢ is given by a product of
functions of each variable alone, then the basic equation
V2¢ = 0 may be solved by the separation of variables
method. From physical considerations, it may be expected
that the solution ¢ will be given by the product of the func-
tions of the horizontal components U(x,y), the vertical
component P(z), and the time f(¢). Hence

¢ = Uxy)- P2) - f(2).

This value of ¢(x,y,z,t) can be used in the continuity
equation, V2¢ = 0. Algebraic manipulation of the result
will give:

0*Ujox* + 0*Ujoy*  d*P/dz*
- Ulx) )
This may be written as
VU P’
TU TP

Notice that the functions of x and y are on one side of the
equal sign, while the functions of z are on the other. The
variables have been separated.

It must be said that it was not certain at the beginning
that it would have been possible to separate the variables as
has been done. However, it will be shown later that this
process may be performed for solutions of V2¢ = 0. The
right-hand side of the above equation is a function of z.
The left-hand side is a function of x and y. Since x and y
can vary independently of z and vice versa, the only way in
which the function of x and y and the function of z can
always be equal (as stated by the above equation) is if the
left-hand side and the right-hand side are both equal to the
same constant m?> where m may be real or imaginary.

It will be easily seen that if m is imaginary there is no
physical meaning to the solutions in the case of wave
motion. Thus, m is chosen to be real and m?® is always
positive.

The equations

P_” _ ViU o,
p- " u "
are now reduced to
d*p 5
- -0
de P(Z)
and
0*U 0*U

R - 2 =
F + e + m*U(x,y) =0
These equations will often be written in the shorter form:
d2
V2 +m?)U =0

The last equation is the well-known Helmholtz equation
(also called the wave equation) of mathematical physics.

16-2.2 Wave Motion along a Vertical

2
(% - m2>P =0

may easily be integrated, giving the general solution

The equation

P = Ae™ + Be™™

where A and B are constants.
The boundary condition at the bottom,

%%

82 z=—d

gives for any fixed value of x, y, and ¢:
dpP

dz z=—d

=0




When this boundary condition is applied to the solution
for P the result is

mAe ™ — mBe*™ = 0
Hence
Ae ™ = Bet™
Consider the original solution,
P = A¢™ + Be™™
Multiply each term on the right by e"™e*™. Let
Ae ™ = Bet™ = 1D

and substitute this in the equation for P. The result is
P = 2 (em(z+d) + e—m(z+d))
2

That is P = D cosh m(z + d).
Now, substituting P in the expression of ¢ gives

¢ = D cosh m(d + z)U(x,y) f(¢)

16-2.3 Introduction of the Free Surface
Condition : General Solution

The solution for f(t) is given by the Cauchy-Poisson
condition at the free surface:

¢ 0
<W * QE)FO =0

Substitute the value of ¢ obtained in the previous section
in this equation. Only the case when z = 0 needs to be
considered here, since this is the free surface condition.
When the resulting equation is divided by the value of ¢,
the following is obtained:

f"/f = —gm tanh md

If we let k* = gm tanh md, the solution for f is given by
the equation f” + k*f = 0. The characteristic equation
r? 4+ k? = 0 gives r = +ik. Hence

f — Oteikt + Be—ikt
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where a, B are constant coefficients which depend upon
the boundary conditions, k is the frequency 27/T, and T is
the wave period. When = 0 and the coefficient « is in-
cluded in the coefficient D, it is found

¢ = D cosh m(d + z)U(x,y)e™

Since there exist an infinite (but discrete) number of values
for k, and m, which satisfy the equation

k? = m,g tanh m, d

a general solution for ¢ can be written as

o0
¢ = Y D,coshm,d + z)U,(x.y) exp (ik,t + &,)
n=0
where ¢, is a phase constant.
Consider the case of a monochromatic wave. It is
convenient to express D as a function of the wave height 2a.
From the free surface dynamic equation for slow motion,

10
n=- —¢
g at z=0
one obtains

ikD .
n= 17 cosh mdU(x,y)e™

Considering only the real part, this can be written as
(recall i = —1):

n=— EgB cosh mdU(x,y) sin kt

The expressions for ¢ and # become more convenient if
we write (aU) for the amplitude of #. Then

a= —kchoshmd

Hence
__9 1
b= k cosh md

and
ag cosh m(d + z)

ikt
k  cosh md Ulxy)e

¢ =
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Substituting the relationship k? = mg tanh md leads to

; E cosh m(d + z)
m  sinh md

With the value of D that has been found, the expression for
P becomes

¢=- U(x,y)e™

ak cosh m(d + z)

ag cosh m(d + z)
m sinhmd =~k

cosh md

Under these conditions the wave height at any point is
2aU(x,y). U(x,y) is the relative value of the wave height with
respect to a plane or a point where it is simply 2a.

16-3 Two-Dimensional Wave Motion

16-3.1 Integration of the Wave Equation

The differential equation to be solved is (VZ + m?)U = 0.

A general solution of this equation does not exist, but a
number of solutions may be found, corresponding to
particular boundary conditions. In the case of a two-
dimensional wave such as motion encountered in a wave
flume.

%_o Y_y

ay dy

This reduces the wave equation to

52
2 —
<W +m )U =0
Solving this, one finds that the solutions for U are given by
any linear combination of e~ and ™ such as,

U = A/eimx + Bre—imx
In particular if U = e~ ™, then

k cosh m(d + Z) i(kt —mx)
¢ =  —hma ©

or
cosh m(d + z)

sinh md

¢ = —aE cos (kt — mx)
m

This is the velocity potential function of a progressive wave
traveling in the OX direction.

If U = ¢™*, the velocity potential function of a wave
traveling in the opposite direction is obtained.

If the solution for U is:

1 . .
U — 5 (exmx _+_ e—tmx) — COS mx
or
1 . . .
U =_— (" — e ™) = sin mx
2i
then

_ k cosh m(d + z) {cos
= _amm{sin}mx cos ki

This is the velocity potential function of a standing wave.
If A’ is different from B’, a partial standing wave is obtained.
In practice, the values for A" and B’ are given by vertical
boundary conditions (wave reflection, etc.).

In the most general case of a two-dimensional irregular
wave, as may be observed at sea, the velocity potential
function ¢ is:

o k, cosh m,(d + z)
¢ = ,,;0 n m, sinhm,d

where ¢, is a phase constant.

When there are two waves only, traveling in the same
direction, the velocity potential function describing the
“beating” phenomena may be obtained easily.

exp Lik,t — m,x + ¢&,)]

16-3.2 Physical Meaning: Wavelength

It is easy to see the physical meaning of the coefficient
m. Since ¢ and consequently # is periodic with respect to
space, m = 2n/L and L is the wavelength.

The wavelength is given by

k? = mg tanh md

and then



that is,

and the wave celerity:

L ¢gT 2nd
C= T= EtanhT

In particular when d/L is small (shallow water)

tanh 2md ~ %

el - 1/2 _ 1/2
=T L=Tid C = (gd)

and
L =Tgd)'"?  C=(gd)'”?

When d/L is large (deep water), tanh 2nd/L = 1, and
L = gT?*/2n, C = gT/2n. The values of L and C are given
as functions of the depth d and the wave period T on the
following nomographs (Figs. 16-3, 16-4, and 16-5).

16-3.3 Flow Patterns

The velocity components areu = —0¢/ox,w = —d¢/oz
and the particle orbits are:

t t
%dt z = 0%

0 0x B Og—z_dt

In the case of a progressive wave:

sinh md

u=ka
sinh m(d + z)

=k
v a sinh md

cos (kt — mx)

The particle orbits are determined by assuming that the
motion around a fixed point x,, z, is small, so that one can
consider x and z constant in the integration.

Chapter 16: Linear Small Amplitude Wave Theories

cosh m(d + z,)

sinhmd S (kt — mx)

x=x0—

and
sinh m(d + z,)
sinh md

Squaring and adding these two last equations to eliminate
t, the equation of an ellipse is obtained
(x — x0)* | (z — z)°
A2 B !

It is now seen that x, and z, are at the center of the ellipse,
i.e., can be considered as the position of the particle at rest
with the horizontal semimajor axis
coshm(d + z,)

sinh md
and the vertical semiminor axis:
sinh m(d + z,)

sinh md

B = a at the free surface, and B = 0 at the bottom (Fig.
16-6). The free surface equation is

z=2zy4+a sin (kt — mx,)

A=a

B=a

109 .
n—aa—asm(kt—mx)

When d — o0, (A/B) — 1 and the orbits are circles of radius
R = aexp (4n*z/gT?).
In the case of a standing wave, it would be easily found
that the paths of particles are straight lines given by
2725 _ _tanh m(d + z,) cot mx,
X — Xo
or

275 _ tanh m(d + z,) tan mx,

X — Xo
(see Fig. 16-7). They are parabolas at a second order of
approximation.

16-3.4 Partial Standing Wave

A partial standing wave is caused by the superimposition
of two waves of the same period but travelling in opposite
directions and with different amplitudes (Fig. 16-8).
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Figure 16-3
Wavelength vs depth and period.
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The first-order potential function is wave height of the two progressive waves by measuring the
k cosh m(d + z) amplitude at the antinode (maximum) 4 and at the node B

¢ =— —— (minimum). Then,

x [y sin (kt + mx) + o, sin (kt — mx)] o, = X4 + B)

The amplitude at the antinode is (x; + ®,) and at the
node is (a; — a,). It is possible to determine the individual a, = A4 — B)



