ZADATAK:

Za zadani nosač treba analitičkim postupkom odrediti progib nosača u točki C i kut zaokreta presjeka A i B.

Zadano je: $E \cdot I_y = \text{const} = 16,80 \cdot 10^{12} \text{ Nm}^2$

RJEŠENJE:

Određivanje reakcija iz uvjeta ravnoteže:

$\Sigma M_A = 0 \quad \Rightarrow \quad R_A = 55,0 \text{ kN}$

$\Sigma M_B = 0 \quad \Rightarrow \quad R_B = 35,0 \text{ kN}$

Kontrola: $\Sigma V = 0 \quad \Rightarrow \quad F + q \cdot 3 = R_A + R_B$

Diferencijalna jednadžba elastične linije nosača:

$EI_y \cdot \frac{d^2 w}{dx^2} = -M(x)$ \hspace{1cm} \text{(1)}$

Jednadžba momenta savijanja:

$M(x) = R_A \cdot x - F \cdot (x - 2) + q \cdot \frac{(x - 3)^2}{2} + R_B \cdot (x - 6) + q \cdot \frac{(x - 6)^2}{2}$ \hspace{1cm} \text{(2)}$

Vrijedi za: $(x - a_i) > 0$

$(2) \Rightarrow \text{(1)} \quad \int EI_y \cdot \frac{d^2 w}{dx^2} = R_A \cdot x + F \cdot (x - 2) + q \cdot \frac{(x - 3)^2}{2} - R_B \cdot (x - 6) - q \cdot \frac{(x - 6)^2}{2}$

$EI_y \cdot \frac{dw}{dx} = EI_y \cdot \varphi(x) = -R_A \cdot x^2 + F \cdot \frac{(x - 2)^3}{2} + q \cdot \frac{(x - 3)^3}{6} - R_B \cdot \frac{(x - 6)^3}{2} - q \cdot \frac{(x - 6)^3}{6} + C$ \hspace{1cm} \text{∫}$

$EI_y \cdot w(x) = -R_A \cdot \frac{x^3}{6} + F \cdot \frac{(x - 2)^3}{6} + q \cdot \frac{(x - 3)^4}{24} - R_B \cdot \frac{(x - 6)^3}{6} - q \cdot \frac{(x - 6)^4}{24} + C \cdot x + D$

Rubni uvjeti za određivanje konstanti integracije C i D:

$x = 0 \quad \Rightarrow \quad w = 0 \quad \Rightarrow \quad D = 0$

$x = 6 \text{ m} \quad \Rightarrow \quad 0 = -R_A \cdot \frac{6^3}{6} + F \cdot \frac{(6 - 2)^3}{6} + q \cdot \frac{(6 - 3)^4}{24} + C \cdot 6 \quad \Rightarrow$

$C = 145,42 \text{ kNm}^2$
Jednadžba elastične linije nosača:

$$EI_y \cdot w(x) = -R_A \cdot \frac{x^3}{6} + F \cdot \frac{(x-2)^3}{6} + q \cdot \frac{(x-3)^4}{24} - R_B \cdot \frac{(x-6)^3}{6} - q \cdot \frac{(x-6)^4}{24} + C \cdot x$$

(3)

Određivanje progiba nosača u točki C: $x = 8 \text{ m}$

$$EI_y \cdot w_C = -35 \cdot \frac{8^3}{6} + 30 \cdot \frac{(8-2)^3}{6} + 20 \cdot \frac{(8-3)^4}{24} - 55 \cdot \frac{(8-6)^3}{6} - 20 \cdot \frac{(8-6)^4}{24} + 145,42 \cdot 8 = -309,14 \text{ kNm}^3$$

$$w_C = \frac{-309,14}{EI_y} = \frac{-309,14 \cdot 10^3 \cdot 10^9}{16,8 \cdot 10^{12}} = -18,40 \text{ mm}$$

Jednadžba kuta zaokreta presjeka (nagiba tangent elastične linije nosača):

$$EI_y \cdot \phi(x) = -R_A \cdot \frac{x^2}{2} + F \cdot \frac{(x-2)^2}{2} + q \cdot \frac{(x-3)^3}{6} - R_B \cdot \frac{(x-6)^2}{2} - q \cdot \frac{(x-6)^3}{6} + C$$

(4)

Određivanje kuta zaokreta presjeka A: $x = 0 \text{ m}$

$$EI_y \cdot \phi_A = C = 145,42 \text{ kNm}^2$$

$$\phi_A = \frac{145,42}{EI_y} = \frac{145,42 \cdot 10^3 \cdot 10^6}{16,8 \cdot 10^{12}} = +0,008656 \text{ rad} = +0^\circ 29' 45,4''$$

Određivanje kuta zaokreta presjeka B: $x = 8 \text{ m}$

$$EI_y \cdot \phi_B = -35 \cdot \frac{8^2}{2} + 30 \cdot \frac{(8-2)^2}{2} + 20 \cdot \frac{(8-3)^3}{6} - 55 \cdot \frac{(8-6)^2}{2} - 20 \cdot \frac{(8-6)^3}{6} + 145,42 = -154,58 \text{ kNm}^2$$

$$\phi_B = \frac{-154,58}{EI_y} = \frac{-154,58 \cdot 10^3 \cdot 10^6}{16,8 \cdot 10^{12}} = -0,009201 \text{ rad} = -0^\circ 31' 37,8''$$

Određivanje progiba nosača u točki C preko kuta zaokreta ϕ_B:

$$w_C = -\phi_B \cdot a = -0,009201 \cdot 2000 = -18,40 \text{ mm}$$

Dobijemo isto kao i preko jednadžbe elastične linije nosača (3)!