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Abstract. The application of interest in this paper is model updating based on vibration monitoring of 

an instrumented structure, especially to detect and quantify localized stiffness losses as a proxy for 

damage. Because of its ability to quantify modeling uncertainty, a Bayesian approach is used in which 

the relative plausibility of each model in a model class (based on parameterized set of structural 

models) is quantified by its posterior probability from Bayes’ Theorem. In addition, the relative 

plausibility of each model class within a set of candidate model classes can also be assessed. 

Computation of this posterior probability from Bayes’ Theorem over all candidate model classes 

automatically applies a quantitative Ockham’s razor that trades off a data-fit measure with an 

information-theoretic measure of model complexity, which penalizes model classes that “over-fit” the 

data. We present our recent progress in exploring sparse Bayesian learning for structural health 

monitoring, in which we infer spatially-sparse substructural stiffness reductions in a way that is 

consistent with the Bayesian Ockham razor. Illustrative results validate the capability of the presented 

sparse Bayesian learning algorithms for structural health monitoring. 

Keywords: Structural Health Monitoring, System Identification, Bayesian Updating, Bayesian model 

class selection, Probability Logic, Uncertainty Quantification, Bayesian Ockham Razor; Sparse Bayesian 

Learning, Hierarchical Bayesian Model. 

1 Introduction  

System identification is the key component in model-based inversions for detection and assessment of damage in 

structural health monitoring. It uses observed structural response data and prior knowledge to update 

mathematical models of the behavior of a system such as a bridge or building subject to dynamic excitation. In 

addition to structural health monitoring, the goals of such data-informed modeling might also include providing 

a better understanding of the structural system’s behavior and allowing more accurate predictions of its future 

response to specified excitations.  

One of the main difficulties is that it is impossible to exactly model the full behavior of a structure by using the 

limited sensor data and prior knowledge available. Since any model gives an approximation to the real system 

behavior, there are always modeling uncertainties involved; for example, what values of the model parameters 

are appropriate and how well does the model predict the real system response? Another difficulty is that for 

complex system models, single-point parameter estimation often gives non-unique results (e.g. multiple least-

squares or maximum likelihood estimates). In order to make more robust predictions, one should track all 

plausible values of the parameters based on the data and also explicitly treat the uncertain prediction errors (the 

difference between the response of the real system and that of the system model), as well as possible 

measurement errors. These issues have motivated numerous researchers to tackle the problem of structural 

system identification from a Bayesian perspective (e.g. Beck, 2010; Green et al., 2015; Au & Zhang, 2016; 

Huang et al., 2017b).   

In contrast to the point estimates of the parameters used in the conventional deterministic or frequentist 

probabilistic methods, the Bayesian probabilistic framework uses Bayes’ Theorem to quantify the relative 

plausibility based on the data of all possible values of the model parameters via their posterior PDF (probability 

density function). This procedure is used to learn about all plausible models for representing the system’s 

behavior where each parameter value specifies a possible model for the system. Since there is always uncertainty 

in which parameterized model class to choose to represent a system, one can also choose a set of candidate 

model classes and calculate their posterior probability based on the data by applying Bayes’ Theorem at the 
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model class level. An information-theoretic interpretation (Muto & Beck, 2008; Beck, 2010) shows that the 

posterior probability of each model class depends on the difference between a measure of the average data-fit of 

the model class and the amount of information extracted from the data by the model class, which penalizes 

model classes that “over-fit” the data. Comparing the posterior probability of each model class therefore 

provides a quantitative Ockham’s razor (Gull, 1989; Jefferys & Berger, 1992; Mackay, 1992), that is, models 

should be no more complex than is sufficient to explain the data.  

Sparse Bayesian learning (Tipping, 2001a) is a supervised learning framework that is very effective at 

implementing Ockham's Razor by achieving parsimonious (sparse) representations in the context of regression 

and classification. It was the basis for the introduction of the relevance vector machine (Tipping, 2000) and 

sparse principal component analysis (Tipping, 2001b). We give an overview of our recent progress of developing 

sparse Bayesian learning algorithms for system identification, and present illustrative examples to show the 

capability of these methods. 

2 Bayesian system identification and the Bayesian Ockham Razor  

Consider the problem of predicting the output 𝐳(𝑡) to some input 𝐮(𝑡) of a real dynamic system over some time 

interval, 𝑡 ∈ [0, 𝑡𝑓] , by using a computational model of the system. We use 𝐮𝑛 = 𝐮(𝑛∆𝑡) ∈ ℝ𝑁𝐼  and 𝐳𝑛 =

𝐳(𝑛∆𝑡) ∈ ℝ𝑁𝑜  to denote the real system input and output, respectively, at discrete times 𝑡𝑛 = 𝑛∆𝑡, 𝑛 ∈ ℤ+, and 

use 𝐮0:𝑛 = [𝐮0
𝑇 , 𝐮1

𝑇 , … , 𝐮𝑛
𝑇]𝑇 and 𝐳0:𝑛 = [𝐳0

𝑇 , 𝐳1
𝑇 , … , 𝐳𝑛

𝑇]𝑇 to denote the discrete-time histories of the system input 

and output up to time 𝑡𝑛. 

2.1 Stochastic model class 

In modeling the I/O (input and output) behavior of a real system, one cannot expect any chosen deterministic 

model to make perfect predictions and the prediction errors of any such model will be uncertain. This motivates 

the introduction of a stochastic (or Bayesian) model class ℳ (Beck, 2010) that consists of a set of stochastic I/O 

models valid for any 𝑛 ∈ ℤ+ {𝑝(𝐳1:𝑛|𝐮0:𝑛, 𝐰, ℳ): 𝐰 ∈ 𝐖 ⊂ ℝ𝑁𝑝} (also called stochastic forward models) for a 

system, together with a chosen prior probability distribution 𝑝(𝐰|ℳ) over this set that quantifies the initial 

relative plausibility of each I/O probability model corresponding to each value of the parameter vector 𝐰. Any 

deterministic I/O model of a system that involves uncertain parameters can be used to construct such a model 

class for the system by stochastic embedding (Beck, 2010) in which the Principle of Maximum Information 

Entropy plays an important role (Jaynes 1983; Jaynes 2003) (see (1) in the next sub-section). 

Remark 2.1: Probability as a logic provides a rigorous foundation for the Bayesian approach. Probability in 

probability logic is interpreted as the degree of plausibility of a statement on the basis of the specified 

conditioning information (Cox, 1946,1961; Jaynes, 1957,2003; Beck, 2010). This allows the uncertainty in 

predictions to be quantified due to our incomplete information because of our limited capacity to collect or 

understand the relevant information. The probability logic axioms apply to incorporating not only parametric 

uncertainty (uncertainty about which model in a proposed set should be used to represent the structure’s I/O 

behavior) but also non-parametric uncertainty due to the existence of prediction errors because of the 

approximate nature of any structural model. This is in contrast to the relative frequency interpretation of 

probability in Kolmogorov’s axioms, which is restricted to “inherently random” physical variables. 

2.2 Bayesian updating for a given model class  

If sensor data 𝓓𝑁 = {𝐮̂0:𝑁 , 𝐲̂1:𝑁} are available where 𝐲̂1:𝑁 and 𝐮̂0:𝑁 are the measured time histories of the system 

output and the corresponding measured system input (if available), respectively, sampled at time interval ∆𝑡, 

then a model can be developed to predict the measured system output 𝐲𝑛 at each time 𝑡𝑛 by using: 

 𝐲𝑛 = 𝐳𝑛 + 𝐦𝑛 = 𝐪𝑛(𝐮̂0:𝑛, 𝐰) + 𝐞𝑛 + 𝐦𝑛                                    (1) 

where 𝐦𝑛 and 𝐞𝑛 denote the measurement noise and output prediction error at time 𝑡𝑛 and the system output 

equation 𝐳𝑛 = 𝐪𝑛(𝐮̂0:𝑛, 𝐰) + 𝐞𝑛 is used where 𝐪𝑛 is the corresponding output of a parameterized deterministic 

model that can be based on theoretical principles (e.g., a FEM model). A probability model can be chosen for the 

I/O behavior by selecting a PDF for 𝐞1:𝑛 that maximizes Shannon’s entropy (a measure of uncertainty) subject to 

some prior constraints. This procedure is called stochastic embedding of the parameterized deterministic model 

in Beck (2010). A probability model can also be chosen for the measurement error {𝐦𝑛} based on a separate 

study of the sensors, where {𝐦𝑛} is taken independent of the prediction errors {𝐞𝑛}. This leads to a probability 

model 𝑝(𝐲1:𝑁|𝐮̂0:𝑁 , 𝐰, ℳ)  for predicting the sensor output 𝐲1:𝑁 . In many applications, 𝐦𝑛  is negligible 

compared with 𝐞𝑛 and so it can be dropped, that is, the difference between the measured system output 𝐲𝑛 and 

the actual output  𝐳𝑛 is ignored but not the difference between the real system and model outputs, 𝐳𝑛 and 𝐪𝑛 . 
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The data 𝓓𝑁 can be used to update the relative plausibility of each stochastic I/O model 𝑝(𝐲1:𝑛|𝐮̂0:𝑁 , 𝐰, ℳ), 

𝐰 ∈ 𝐖 ⊂ ℝ𝑁𝑝 , defined by the stochastic model class ℳ, by computing the posterior PDF 𝑝(𝐰|𝓓𝑁 , ℳ) from 

Bayes’ Theorem:  

 𝑝(𝐰|𝓓𝑁 , ℳ) = 𝑝(𝓓𝑁|𝐰, ℳ)𝑝(𝐰|ℳ) 𝑝(𝓓𝑁|ℳ) = 𝑐−1𝑝(𝓓𝑁|𝐰, ℳ)𝑝(𝐰|ℳ)⁄                 (2) 

where 𝑐 = 𝑝(𝓓𝑁|ℳ) is the normalizing constant, which is called the evidence or marginal likelihood for the 

model class ℳ given by data 𝓓𝑁; 𝑝(𝓓𝑁|𝐰, ℳ), as a function of 𝐰, is the likelihood function which expresses 

the probability of getting data 𝓓𝑁  based on the PDF 𝑝(𝐲1:𝑁|𝐮̂0:𝑁 , 𝐰, ℳ) by substituting the measured output data 

𝐲̂1:𝑁 for 𝐲1:𝑁 . Note that a model class can be used to perform both prior (initial) and posterior (updated using 

system sensor data) robust predictive analyses, which can be used during design and operation, respectively, of a 

structure, based purely on the probability logic axioms (Papadimitriou et al., 2001; Beck & Taflanidis, 2013). 

2.3 Bayesian updating for multiple model classes 

If 𝐌 denotes the proposition that specifies a discrete set of candidate model classes {ℳ𝑚: 𝑚 = 1,2, … , 𝑁𝑀} that 

is being considered for a system, together with a prior probability distribution 𝑝(ℳ𝑚|𝐌) over this discrete set, 

then the posterior PDF p(𝐰|𝓓𝑁 , 𝐌) based on 𝐌 is given by the Total Probability Theorem: 

 𝑝(𝐰|𝓓𝑁 , 𝐌) = ∑ 𝑝(𝐰|𝓓𝑁 , ℳ𝑚)𝑃(ℳ𝑚|𝓓𝑁, 𝐌)𝑀
𝑚=1    (3) 

where the posterior PDF for each model class ℳ𝑚 in (3), which comes from (2), is weighted by the posterior 

probability 𝑃(ℳ𝑚|𝓓𝑁 , 𝐌) computed from Bayes’ Theorem at the model class level: 

 𝑃(ℳ𝑚|𝓓𝑁 , 𝐌) = 𝑝(𝓓𝑁|ℳ𝑚)𝑃(ℳ𝑚|𝐌) 𝑝(𝓓𝑁|𝐌)⁄   (4) 

Here, 𝑝(𝓓𝑁|ℳ𝑚) is the evidence for ℳ𝑚 provided by the data 𝓓𝑁 (additional conditioning on 𝐌 is irrelevant), 

which is given by the Total Probability Theorem:  

 𝑝(𝓓𝑁|ℳ𝑚) = ∫ 𝑝(𝓓𝑁|𝐰, ℳ𝑚)𝑝(𝐰|ℳ𝑚)𝑑𝐰  (5) 

A uniform prior probability distribution can be chosen for the candidate model classes, that is, 𝑃(ℳ𝑚|𝑴) =
1 𝑁𝑀 ,⁄  if the model classes are considered equally plausible a priori.  

The calculation of the posterior probability 𝑃(ℳ𝑚|𝓓𝑁 , 𝐌) in (4) provides a procedure for Bayesian model class 

selection (or comparison, or assessment), where the computation of the multi-dimensional integral in (5) for the 

evidence function is vital. If there is no analytical solution for (5), Laplace’s approximation method can be used 

when the model class is globally identifiable based on the available data 𝓓𝑁 (e.g. Beck & Yuen 2004, Beck 

2010). When the chosen class of models is unidentifiable or locally identifiable based on the data 𝓓𝑁 so that 

there are multiple MLEs (maximum likelihood estimates) (Beck & Katafygiotis, 1998), only stochastic 

simulation methods are practical to calculate the model class evidence, such as the TMCMC method (Ching & 

Chen, 2007), the stationarity method in Cheung & Beck (2010) or the Approximate Bayesian Computation 

method (Chiachio et al., 2014; Vakilzadeh et al., 2017).  

2.4 Bayesian Ockham Razor 

Comparing the posterior probability of each candidate model class by (4) automatically implements an elegant 

and powerful version of Ockham’s (Occam’s) Razor, known as the Bayesian Ockham Razor. The essence of 

Ockham’s Razor has long been advocated for data-based model identification, that is, a simpler model should be 

preferred over a more complex model if it leads to comparable agreement with the data. However, until recently, 

the approximate complexity measure for a model did not have a rigorous formulation. Two early attempts are 

AIC (Akaike, 1974) and BIC (Schwarz, 1978), which trade-off a data-fit measure with a measure of “complexity” 

proportional to the number of uncertain parameters 𝑁𝑝. Using these simplified criteria for model assessment 

requires caution, however, because their penalty term for model class complexity depends only on 𝑁𝑝  and 

ignores the effect of the prior distribution. 

A recent interesting information-theoretic interpretation (Muto & Beck, 2008; Beck, 2010) shows that the 

evidence 𝑝(𝓓𝑁|ℳ𝑚) in (5) explicitly builds in a trade-off between a data-fit measure for the model class and an 

information-theoretic measure of its complexity that quantifies the amount of information that the model class 

extracts from the data 𝓓𝑁 . This result is based on using (2) in the expression for the normalization of the 

posterior PDF: 
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 log[𝑝(𝓓𝑁|ℳ𝑚)] = ∫ log[𝑝(𝓓𝑁|ℳ𝑚)]𝑝(𝐰|𝓓𝑁 , ℳ𝑚)𝑑𝐰 

 = ∫ log[𝑝(𝓓𝑁|𝐰, ℳ𝑚)𝑝(𝐰|ℳ𝑚) 𝑝(𝐰|𝓓𝑁 , ℳ𝑚)⁄ ]𝑝(𝐰|𝓓𝑁, ℳ𝑚)𝑑𝐰 

 = ∫ log[𝑝(𝓓𝑁|𝐰, ℳ𝑚)]𝑝(𝐰|𝓓𝑁 , ℳ𝑚) 𝑑𝐰 − ∫ log[𝑝(𝐰|𝓓𝑁 , ℳ𝑚) 𝑝(𝐰|ℳ𝑚)⁄ ]𝑝(𝐰|𝓓𝑁 , ℳ𝑚)𝑑𝐰 (6) 

    =E[log(𝑝(𝓓𝑁|𝐰, ℳ𝑚))] − 𝐄[log[𝑝(𝐰|𝓓𝑁 , ℳ𝑚) 𝑝(𝐰|ℳ𝑚)⁄ ]] 

where the expectations 𝐄[∙] are taken with respect to the posterior 𝑝(𝐰|𝓓𝑁 , ℳ𝑚). The first term is the posterior 

mean of the log likelihood function, which is a measure of the average data-fit of the model class ℳ𝑚, and the 

second term is the Kullback-Leibler information, or relative entropy of the posterior relative to the prior, which 

is a measure of the model complexity (the amount of information gain about ℳ𝑚 from the data 𝓓𝑁) and is 

always non-negative. This information-theoretic result was first given by Beck & Yuen (2004) for the case of 

globally identifiable models and then extended to the general case by Ching et al. (2005) where the model may 

be unidentifiable. The merit of (6) is that it shows rigorously, without introducing ad-hoc concepts, that the log 

evidence for ℳ𝑚 explicitly builds in a trade-off between the data-fit of the model class and its information-

theoretic complexity. This is important in structural health monitoring applications, since too complex models 

often lead to over-fitting of the data and the subsequent response predictions may then be unreliable since they 

depend too much on the details of the specific data, e.g., measurement noise and environmental effects. 

3 General formulation of sparse Bayesian learning  

3.1 Input-output model specification 

Given a set of I/O data 𝓓 = {𝐮̂, 𝐲̂}, suppose that the model prediction of the output is 𝐲 = 𝐟(𝐮̂) + 𝐞 + 𝐦 ∈
ℝ𝑁𝑜   involving a deterministic function 𝐟 of the input vector 𝐮̂, along with uncertain prediction error 𝐞 and 

measurement noise 𝐦 . Assume that the function 𝐟  is chosen as a weighted sum of 𝑁𝑝  basis functions 

{𝚯𝑗(𝐮̂)}
𝑗=1

𝑁𝑝
:  

 𝐟(𝐮̂) = ∑ 𝑤𝑗
𝑁𝑝

𝑗=1
𝚯𝑗(𝐮̂) = 𝚯(𝐮̂)𝐰                 (7) 

where 𝚯 is an 𝑁𝑜 × 𝑁𝑝 matrix with the basis functions {𝚯𝑗} as columns. Analysis of this model is facilitated by 

the adjustable parameters (or weights) 𝐰 ∈ ℝ𝑁𝑝 appearing linearly. The objective here is to infer values of the 

parameters {𝑤𝑗}
𝑗=1

𝑁𝑝
 such that 𝚯(𝐮̂)𝐰 is a 'good' approximation of 𝐟(𝐮̂) and the parameter vector 𝐰 is sparse. 

There has been significant recent interest (e.g., Tropp, 2004; Hastie et al, 2015) in the notion of sparse learning 

algorithms which promote significant numbers of the parameter components 𝑤𝑛  to be zero as a means of 

providing model regularization during inverse problems. These methods have been applied for compressive 

sensing (Candès, 2006; Donoho, 2006; Huang et al., 2011; Huang et al., 2014; Huang et al., 2016). 

3.2 Sparse Bayesian learning model 

Sparse Bayesian learning (SBL) encodes a preference for sparser parameter vectors by making a special choice 

for the prior distribution for the parameter vector 𝐰 that is known as the automatic relevance determination 

(ARD) prior (Mackay, 1992; Tipping, 2001a): 

                 𝑝(𝐰|𝛂) = ∏ 𝑝(𝑤𝑗|𝛼𝑗)
𝑁𝑝

𝑗=1
= ∏ 𝒩(𝑤𝑗|0, 𝛼𝑗

−1)
𝑁𝑝

𝑗=1
= ∏ [(2𝜋)−1/2𝛼𝑗

1/2exp {−
1

2
𝛼𝑗𝑤𝑗

2}]
𝑁𝑝

𝑗=1
                 (8) 

where the hyperparameter 𝛼𝑗 is the prior precision (inverse variance) for 𝑤𝑗 . An individual hyperparameter 𝛼𝑗 is 

associated independently with each weight 𝑤𝑗 , thereby moderating the strength of the Gaussian prior. Note that 

an infinite value of 𝛼𝑗 implies that the corresponding coefficient 𝑤𝑗  has an insignificant prior contribution to the 

modeling of the measurements 𝐲, because it produces essentially a Dirac delta-function at zero for the prior, and 

so the posterior. 

By using the principle of maximum information entropy (Jaynes, 1983) and incorporating the first two moments 

as constraints, the combination of the prediction error and measurement noise 𝐞 is modeled as a zero-mean 

Gaussian vector with covariance matrix 𝛽−1𝐈𝑁𝑜
, which gives a Gaussian predictive PDF: 

 𝑝(𝐲|𝐰, 𝛽) = (2𝜋𝛽−1)−
𝑁𝑜

2 exp (−
𝛽

2
‖𝐲 − 𝚯(𝐮̂)𝐰‖2

2) = ∏ 𝒩(𝐲|𝚯(𝐮̂)𝐰, 𝛽−1𝐈𝑁𝑜
)

𝑁𝑝

𝑗=1
 (9) 

By substituting the data 𝐲̂ for 𝐲, (9) gives a Gaussian likelihood function that measures how well the model for 

specified parameters 𝐰 and 𝛽 predicts the measurements 𝐲̂. A stochastic model class ℳ(𝛂, 𝛽) is then defined by 

the I/O predictive model in (9) and the prior PDF on 𝐰 given by (8). 
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3.3 Bayesian updating for given model class 𝓜(𝛂, 𝜷) 

The posterior distribution 𝑝(𝐰|𝐲̂, 𝛂, 𝛽) over the weight parameters given by model class ℳ(𝛂, 𝛽) is computed 

based on Bayes’ theorem: 

 𝑝(𝐰|𝐲̂, 𝛂, 𝛽) = 𝑝(𝐲̂|𝐰, 𝛽)𝑝(𝐰|𝛂) 𝑝(𝐲̂|𝛂, 𝛽)⁄  (10) 

where 𝑝(𝐲̂|𝛂, 𝛽) = ∫ 𝑝(𝐲̂|𝐰, 𝛽)𝑝(𝐰|𝛂)𝑑𝐰 is the evidence of the model class ℳ(𝛂, 𝛽). Since both the prior and 

likelihood for 𝐰 are Gaussian and the likelihood mean 𝚯(𝐮̂)𝐰 is linear in 𝐰, the posterior PDF can be expressed 

analytically as a multivariate Gaussian distribution: 

  𝑝(𝐰|𝐲̂, 𝛂, 𝛽) = 𝒩(𝐰|(𝚯𝑇𝚯 + 𝛽−1𝐀)−1𝚯𝑇𝐲̂, (𝛽𝚯𝑇𝚯 + 𝐀)−1)    (11) 

where 𝐀 = diag (𝛼𝑗, … , 𝛼𝑁𝑝
).     

3.4 Hyperparameter learning by evidence maximization  

A continuous set of candidate model classes ℳ(𝛂, 𝛽) is defined in Subsection 3.2, and the robust posterior PDF 

𝑝(𝐰|𝐲̂) can be computed by integrating out the posterior uncertainty in 𝛂 and 𝛽 as below. We assume that at the 

posterior  𝑝(𝛂, 𝛽|𝐲̂) is highly peaked at {𝛂̃, 𝛽} (the MAP (maximum a posteriori) value of {𝛂, 𝛽} ). We then treat 

{𝛂, 𝛽}  as a ‘nuisance’ parameter vector and integrate it out by applying Laplace’s asymptotic approximation 

(Beck & Katafygiotis, 1998): 

  𝑝(𝐰|𝐲̂) =  ∫ 𝑝(𝐰|𝐲̂, 𝛂, 𝛽)𝑝(𝛂, 𝛽|𝐲̂)𝑑𝛂𝑑𝛽 ≈ 𝑝(𝐰|𝐲̂, 𝛂̃, 𝛽).               (12) 

where:  {𝛂̃, 𝛽} = arg max[𝛂,𝛽] 𝑝(𝛂, 𝛽|𝐲̂)  = arg max[𝛂,𝛽]{𝑝(𝐲̂|𝛂, 𝛽)𝑝(𝛂)𝑝(𝛽)}        (13) 

If we assign flat, non-informative prior PDFs for 𝛂 and 𝛽,  we equivalently just need to maximize the evidence 

function 𝑝(𝐲̂|𝛂, 𝛽). The optimization of {𝛂, 𝛽} is the procedure of Bayesian model class selection (Beck & Yuen, 

2004) from a continuous set of model classes ℳ(𝛂, 𝛽) . For larger amounts of data (larger 𝑁𝑜),  accurate 

predictions are expected that are typically highly sparse because the maximization in (13) causes many 

hyperparameters 𝛼𝑗 to approach infinity during the learning process. This is the Bayesian Ockham razor (Gull, 

1988; Jefferys & Berger, 1992; Mackay, 1992) at work: the maximization of the evidence function 𝑝(𝐲̂|𝛂, 𝛽) 

automatically involves a trade-off between the average data-fit of the model class ℳ(𝛂, 𝛽) and model sparseness 

(more sparseness corresponds to less model complexity), as we discussed in Section 2.4. 

3.5 Robust predictions  

Having found the MAP estimates {𝛂̃, 𝛽}, our approximation to the robust predictive distribution of the system 

response 𝐲 for a given input 𝐮̂ would be: 

 𝑝(𝐲|𝐲̂) = ∫ 𝑝(𝐲, 𝐰, 𝛂, 𝛽|𝐲̂) 𝑑𝐰𝑑𝛂𝑑𝛽 = ∫ 𝑝(𝐲|𝐰, 𝛂, 𝛽) 𝑝(𝐰|𝐲̂, 𝛂, 𝛽)𝑝(𝛂, 𝛽|𝐲̂)𝑑𝐰𝑑𝛂𝑑𝛽 

 ≈ ∫ 𝑝(𝐲|𝐰, 𝛂̃, 𝛽) 𝑝(𝐰|𝐲̂, 𝛂̃, 𝛽)𝑑𝐰              (14) 

This robust predictive PDF takes into account all posterior plausible values of the model parameter vector 𝐰.  

Remark 3.1: A hierarchical Bayesian model (Gelman et al., 2013) is involved if we define hyper-priors over the 

prior precision parameter vector 𝛂 and prediction error precision parameter 𝛽. It is typical to assign gamma 

distributions over 𝛂 and 𝛽 (Tipping. 2001a); however, the inverse gamma hyper-prior over 𝛂 produces a more 

sparse solution (Babacan, 2010). 

Remark 3.2:  The learning of the prior precision parameter 𝛂 is vital to reduce the posterior uncertainties by 

generating sparse models of 𝐰, which leads to higher confidence in the predictions. The treatment of the 

prediction error precision 𝛽 also affects the algorithm performance significantly, especially when the original 

model is only approximately sparse (Huang et al., 2016), which is common for structural health monitoring 

signals. 

Remark 3.3: We have found the SBL algorithm suffers from a robustness problem: there are local maxima for 

(13) that may trap the hyperparameter optimization if the number of measurements 𝑁𝑜 is much smaller than the 

number of model parameters 𝑁𝑝, leading to non-robust Bayesian updating results (Huang et al., 2014). Several 

robustness enhancement algorithms (Huang et al., 2014; Huang et al., 2016) have been developed by employing 

different strategies, with the goal of increasing signal reconstruction accuracy in compressive sensing for 

structural health monitoring signals. 
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4 Recent progress in applying sparse Bayesian learning to system identification in structural 

health monitoring 

4.1 Hierarchical Bayesian model class  

Suppose that we have a vector of identified natural frequencies 𝛚̂2 ∈ ℝ𝑁𝑠𝑁𝑚×1 (𝑁𝑠 and 𝑁𝑚 are the number of 

modal identifications performed and number of extracted modes for each identification) and mode shapes 

𝛙̂ ∈ ℝ𝑁𝑠𝑁𝑚𝑁𝑜×1(𝑁𝑜 is the number of measured degrees of freedom). Since the measured degrees of freedom 

(DOFs) are usually a smaller subset of the DOFs of an appropriate structural model, we introduce the system 

natural frequencies 𝛚2 ∈ ℝ𝑁𝑚×1  and system mode shapes 𝛟 ∈ ℝ𝑁𝑑𝑁𝑚×1  ( 𝑁𝑑  is number of DOFs of the 

structural model) to represent the actual underlying modal parameters of the assumed linear dynamics of the 

structural system at all DOFs corresponding to those of the structural model.  

We choose a set of parameterized linear structural models with classical damping to produce normal modes of 

vibration where each model has the same known mass matrix 𝐌 ∈ ℝ𝑁𝑑×𝑁𝑑  inferred from structural drawings. 

Taking an appropriate substructuring (perhaps focusing on likely damage locations), we decompose the 

uncertain stiffness matrix 𝐊 ∈ ℝ𝑁𝑑×𝑁𝑑  as a linear combination of (𝑁𝜃 + 1) substructure stiffness matrices 

𝐊𝑗, 𝑗 = 0, 1, … 𝑁𝜃: 

 𝐊(𝛉) = 𝐊0 + ∑ 𝜃𝑗𝐊𝑗
𝑁𝜃
𝑗=1                           (15) 

where 𝐊𝑗 ∈ ℝ𝑁𝑑×𝑁𝑑 , 𝑗 = 1, … , 𝑁𝜃 ,  is the prior choice of the 𝑗𝑡ℎ  substructure stiffness matrix and the 

corresponding stiffness scaling parameter 𝜃𝑗  is a factor that allows modification of the nominal 𝑗𝑡ℎsubstructure 

stiffness so it is more consistent with the real structure behavior. The stiffness matrices 𝐊𝑗 could come from a 

finite-element model of the structure, then it would be appropriate to choose all 𝜃𝑗 = 1 to give the most probable 

value a priori for the parameter vector 𝛉 ∈ ℝ𝑁𝜃 .  For damage detection purposes, we will exploit the fact that the 

onset of stiffness reductions is typically in a small number of locations in the absence of structural collapse, and 

so the potential change in 𝛉 compared with that of a reference calibration stage is expected to be a sparse vector 

with relatively few non-zero components. 

The following joint prior PDF for system parameters 𝛚2 and 𝛟 and stiffness scaling parameters 𝛉 is chosen 

(Huang & Beck, 2015a): 

  𝑝(𝛚2, 𝛟, 𝛉|𝛽) ∝ (2𝜋 𝛽⁄ )−𝑁𝑚𝑁𝑑/2exp {−
𝛽

2
∑ ‖(𝐊(𝛉) − 𝜔𝑚

2  𝐌)𝛟𝑚‖
2𝑁𝑚

𝑚=1 }     (16) 

where the finite value of the equation-error precision parameter 𝛽 in (16) provides a soft constraint for the eigen-

equation and it allows for the explicit control of how closely the system and model modal parameters agree.  

Note that we can decompose the joint prior PDF 𝑝(𝛚2, 𝛟, 𝛉|𝛽)  into the product of a conditional PDF for any 

one of the parameter vectors and a marginal PDF for the other two parameter vectors. Although the modal 

parameters are a nonlinear function of the stiffness parameters, we employ a trick to produce a series of coupled 

linear−in−the−parameter problems. 

We choose the unique MAP value 𝛉̂𝑢 from applying Bayesian updating using a large amount of time-domain 

vibration data from the calibration state as pseudo-data to define the likelihood function for 𝛉 as: 

 𝑝(𝛉̂𝑢|𝛉, 𝛂) = ∏ 𝒩(𝜃̂𝑢,𝑖|𝜃𝑖 , 𝛼𝑖
−1)

𝑁𝜃
𝑖=1   (17) 

Although the conventional strategy in SBL is to use an ARD Gaussian prior PDF (Tipping, 2001a) to model 

sparseness, here we incorporate the ARD concept in the likelihood function, along with the prior on 𝛉 in (16).  

Gaussian likelihood functions 𝑝(𝛚̂2|𝛚2, 𝛒) and 𝑝(𝛙̂|𝛟, 𝜼) are also defined for system parameters 𝛚2  and 𝛟 

with precision parameters 𝝆 and 𝜼, respectively. In addition, we model our prior uncertainty in the equation error 

precision 𝛽 by an exponential hyper-prior 𝑝(𝛽|𝑏0) with rate parameter 𝑏0. The proposed modeling constitutes a 

multi-stage hierarchical model as shown in Figure 1. The bidirectional arrow in the graph of the hierarchical 

Bayesian model represents the information dependence between structural modal parameters 𝛚2and 𝛟, which 

comes from the joint prior 𝑝(𝛚2, 𝛟|𝛽). 
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Fig 1. Acyclic graph representing the information flow in the hierarchical Bayesian model for offline SBL algorithms. 

4.2 Fast sparse Bayesian learning algorithm  

To facilitate the goal of presenting a fast algorithm to perform SBL, we focus on an analytical derivation of the 

posterior PDF of the stiffness scaling parameter 𝛉 and collect all uncertain parameters except 𝛉 in the vector 

𝛅 = [(𝛚2)𝑇 , 𝝆𝑇 , 𝛟𝑇 , 𝜼, 𝛂𝑇 , 𝛽, 𝑏0]𝑇 as ‘nuisance’ parameters, which are treated by using Laplace’s approximation 

method (their posterior uncertainties are effectively ignored). The stochastic model class ℳ(𝛅) for the structural 

model is defined by the likelihood functions 𝑝(𝛉̂𝑢|𝛉, 𝛂), 𝑝(𝛚̂2|𝛚2, 𝛒) and 𝑝(𝛙̂|𝛟, 𝜼) and the joint priors given 

by the product of 𝑝(𝛚2, 𝛟, 𝛉|𝛽) and 𝑝(𝛽|𝑏0). Based on this defined stochastic model class ℳ(𝛅), one can use 

the available modal data 𝛚̂2 and 𝛙̂  and pseudo-data 𝛉̂𝑢 to update the structural model parameters 𝛉 for system 

identification purposes. We assume that the posterior 𝑝(𝛅|𝛚̂2, 𝛙̂, 𝛉̂𝑢) is highly peaked at 𝛅̃ (the MAP value of 𝛅). 

We then use Laplace’s asymptotic approximation (Beck & Katafygiotis, 1998): 

 𝑝(𝛉| 𝛚̂2, 𝛙̂, 𝛉̂𝑢) = ∫ 𝑝(𝛉|𝛅, 𝛚̂2, 𝛙̂, 𝛉̂𝑢)𝑝(𝛅|𝛚̂2, 𝛙̂, 𝛉̂𝑢) 𝑑𝛅 ≈ 𝑝(𝛉| 𝛅̃, 𝛚̂2, 𝛙̂, 𝛉̂𝑢)               (18) 

where 𝑝(𝛉|𝛅, 𝛚̂2, 𝛙̂, 𝛉̂𝑢) is the posterior PDF for a given model class ℳ(𝛅),  𝛅̃  = arg max 𝑝(𝛅|𝛚̂2, 𝛙̂, 𝛉̂𝑢), and 

𝑝(𝛅|𝛚̂2, 𝛙̂, 𝛉̂𝑢) ∝ 𝑝(𝛚̂2, 𝛙̂, 𝛉̂𝑢|𝛅)𝑝(𝛅) 

 = ∫ 𝑝(𝛉̂𝑢|𝛉, 𝛂) 𝑝(𝛚̂2|𝛚2, 𝛒)𝑝(𝛙̂|𝛟, 𝜂)𝑝(𝛉|𝛚2, 𝛟, 𝛽)𝑝(𝛚2, 𝛟|𝛽)𝑝(𝛒|𝛕)𝑝(𝛽|𝑏0)𝑑𝛉        (19) 

where 𝑝(𝛚̂2, 𝛙̂, 𝛉̂𝑢|𝛅) is the evidence function for the model class ℳ(𝛅). The full posterior uncertainty in 𝛉 is 

explicitly incorporated when finding the MAP estimates of all parameters in 𝛅, although it is a nontrivial task. 

The full details of the fast SBL algorithm are given in Huang et al. (2017a). 

Remark 4.1: The maximization of evidence in (19) is effectively implementing the Bayesian Ockham Razor by 

assigning lower probabilities to a structural model whose parameter vector 𝛉  has too large or too small 

differences from 𝛉̂𝑢  identified from the calibration state (that is, the model extracts relatively more or less 

information, respectively, from the system modal parameters 𝛚2 and 𝛟, and so from the “measured” modal data 

𝛚̂2 and 𝛙̂, which can be seen from the hierarchical model in Figure 1). This process suppresses the occurrence 

of false and missed alarms for stiffness reductions.  

Remark 4.2: It was found that the trade-off stated in Section 2.4 is sensitive to the selection of the equation-error 

precision parameter  𝛽. This motivated us to develop a more sophisticated method, described in the next sub-

section, to provide a fuller treatment of the posterior uncertainties, including marginalizing over the posterior 

uncertainty of 𝛽 analytically to get a more robust solution. 

Remark 4.3: In the fast SBL algorithm, the pseudo-data 𝛉̂𝑢 is used based on the assumption that it is a unique 

MAP estimate at the calibration state due to the large amount of time-domain vibration data and identified modal 

parameters that can be collected. In the next subsection, we relax this assumption by explicitly considering the 

posterior uncertainty of 𝛉𝑢 at the calibration stage in case there is not sufficient data to get a posterior on 𝛉𝑢 that 

is highly peaked at 𝛉̂𝑢. 

4.3 Sparse Bayesian learning algorithm using Gibbs sampling  

The goal of the algorithm presented here is to provide a fuller treatment of the posterior uncertainty by 

employing MCMC simulation methods, so that the Laplace approximations in the fast SBL algorithm that 

involve the system modal parameters {𝛚2, 𝛟} and the equation-error precision parameter  𝛽 can be avoided. 

Based on the hierarchical model presented in Figure 1, the posterior PDF 𝑝(𝛚2, 𝛟, 𝛉|𝛚̂2, 𝛙̂, 𝛉̂𝑢)  can be 
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calculated by marginalizing over the parameters 𝛽, 𝜂, 𝜌, 𝛂 and 𝑏0 in the full posterior PDF from Bayes’ theorem 

as follows:  

 𝑝(𝛚2, 𝛟, 𝛉|𝛚̂2, 𝛙̂, 𝛉̂𝑢) = 𝑝(𝛚̂2|𝛚2)𝑝(𝛙̂|𝛟)𝑝(𝛉̂𝑢|𝛉)𝑝(𝛚2, 𝛟, 𝛉) 𝑝(𝛚̂2, 𝛙̂, 𝛉̂𝑢)⁄   

   = ∫ 𝑝(𝛚̂2|𝛚2, 𝜌)𝑝(𝛙̂|𝛟, 𝜂)𝑝(𝛉̂𝑢|𝛉, 𝛂)𝑝(𝛚2, 𝛟, 𝛉|𝛽)𝑝(𝛽|𝑏0)𝑝(𝜌, 𝜂, 𝛂, 𝑏0)𝑑𝛽𝑑𝜌𝑑𝜂𝑑𝛂𝑑𝑏0 𝑝(𝛚̂2, 𝛙̂, 𝛉̂𝑢)⁄     (20) 

The resulting expression is intractable because the high-dimensional normalizing integral 𝑝(𝛚̂2, 𝛙̂, 𝛉̂𝑢) cannot 

be computed analytically. Instead, we implement Gibbs Sampling to draw posterior samples from 

𝑝(𝛟, 𝛚2, 𝛉|𝛚̂2, 𝛙̂, 𝛉̂𝑢) by decomposing the whole model parameter vector into the three groups {𝛟, 𝛚2, 𝛉} and 

repeatedly sampling from one parameter group conditional on the other two groups and the available data. We 

can derive the generic form 𝑝(𝐰1|𝐲̂, 𝐰2, 𝐰3) = ∫ 𝑝(𝐰1|𝐲̂, 𝐰2, 𝐰3, 𝛽)𝑝(𝛽|𝐲̂, 𝐰2, 𝐰3) 𝑑𝛽 of the conditional 

posterior PDFs 𝑝(𝛟|𝐲̂, 𝛚2, 𝛉) ,  𝑝(𝛚2|𝐲̂, 𝛟, 𝛉)  and 𝑝(𝛉|𝐲̂, 𝛟, 𝛚2) by marginalizing over their corresponding 

nuisance parameters using Laplace approximations (similar to (18) and (19)). The reader is referred to Huang & 

Beck (2015b) and Huang et al. (2017b) for detailed information of the SBL algorithm using Gibbs Sampling, 

including the derivation of the generic form of the conditional posterior PDF 𝑝(𝐰1|𝐲̂, 𝐰2, 𝐰3) and the pseudo-

codes. 

If the Markov chain created by the GS algorithms is ergodic, samples from the marginal posterior distributions 

𝑝(𝛉|𝛚̂2, 𝛙̂, 𝛉̂𝑢), 𝑝(𝛚2|𝛚̂2, 𝛙̂, 𝛉̂𝑢)  and 𝑝(𝛟|𝛚̂2, 𝛙̂, 𝛉̂𝑢) are readily obtained by simply examining the GS 

samples 𝛉(𝑛)  (𝛚2)(𝑛) and 𝛟(𝑛) , respectively, for larger iteration numbers beyond the burn-in period. Using 

samples from the marginal posterior PDF 𝑝(𝛉𝑢|𝛙̂𝑢, 𝛚̂𝑢
2 ) at the calibration stage, we are able to effectively take 

into account the uncertainty of  𝛉u during the monitoring stage by replacing the MAP value 𝛉̂𝑢 with uncertain 𝛉𝑢, 

and then drawing samples from the posterior PDF 𝑝(𝛉|𝛚̂𝑑
2 , 𝛙̂𝑑 , 𝛚̂𝑢

2 , 𝛙̂𝑢) for the monitoring stage, which is 

conditional on modal data from both the monitoring and calibration stages.  

Remark 4.4: The analytical derivation of the generic conditional posterior PDF 𝑝(𝐰1|𝐲̂, 𝐰2, 𝐰3) is important for 

the effectiveness of this Gibbs Sampling algorithm, which leads to a very desirable feature that it is applicable to 

linear Bayesian model updating problems of arbitrarily high dimensions, in contrast with other MCMC 

algorithms. 

Remark 4.5: In the Gibbs Sampling Algorithm, by marginalizing over 𝛽 directly to remove it from the 

posterior distributions, we get the Student-t conditional PDFs that can be sampled in each step of the 

algorithm. The Student-t PDFs have heavier tails than the Gaussian PDFs sampled in Algorithm 1 and so 

the algorithm is more robust to noise and outliers. 

Remark 4.6: For the updating of the stiffness scaling parameters 𝛉 and system modal parameters 𝛚2 and 𝛟,  the 

corresponding model classes ℳ(𝛄, 𝑏0), ℳ(𝜐, 𝑏0) andℳ(𝜏, 𝑏0)are investigated, as seen from the hierarchical 

Bayesian model in Figure 1. The application of Bayes’ Theorem at the model class level automatically penalizes 

models of 𝛉 (𝛚2or 𝛟) that “under-fit” or “over-fit” the associated data 𝛉̂𝑢 (𝛚̂2or 𝛙̂), therefore obtaining reliable 

updating results for the three parameter vectors, which is the Bayesian Ockham Razor (Beck, 2010) at work.  

4.4 Illustrative results of the sparse Bayesian learning algorithms 

The proposed methodologies are applied to the brace damage patterns in the IASC-ASCE experimental 

Phase II benchmark problem (Dyke et al., 2003; Ching & Beck, 2003). The benchmark structure is a four-

story, two-bay by two-bay steel braced-frame. Three damage configurations (Configs. 4,5,6) and one 

calibration (undamaged) configuration are investigated in this study. The stiffness scaling parameter vector 

𝛉 has 16 components, one for each of the four faces of each of the four stories. The true ratio values for 

𝜃1,−𝑦 and 𝜃4,−𝑦 for Config. 4, and 𝜃1,−𝑦 for Config. 5, are 77.4% and the true ratio value 𝜃1,−𝑦 for Config. 6 is 

54.9% of the values for the calibration configuration. 

In Figure 2, all the samples generated from the Gibbs Sampling algorithm, excluding those in the burn-in 

period (4000 samples), are plotted in the {𝜃1,−𝑦, 𝜃2,−𝑦} and {𝜃3,−𝑦, 𝜃4,−𝑦} spaces for Config. 5. They show 

that the stiffness reduction corresponding to 𝜃1,−𝑦 is correctly identified and quantified as far as the sample 

means are concerned. Smaller posterior uncertainties can be observed in the stiffness scaling parameters for 

undamaged substructures, which is a benefit of the procedure of continuous model class selection by 

learning of the hyperparameters in the SBL formulation. 

Figure 3 compares the probability that any stiffness parameter 𝜃𝑗 of a substructure has decreased by more 

than a prescribed fraction 𝑓 estimated using the computed posterior PDFs (fast algorithm) or posterior 

samples (Gibbs Sampling algorithm). It is seen that the two algorithms generate similar results for Config. 
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4; however, for Config. 5 the posterior uncertainty of the stiffness parameters for the undamaged 

substructures are smaller for the Gibbs Sampling algorithm. For Config.  6, the occurrence of false damage 

detections is more unlikely for the Gibbs Sampling algorithm, presumably due to the robust treatment of 

the equation-error precision parameter 𝛽 and stiffness parameter vector at the calibration state by a fuller 

model uncertainty quantification. 

Remark 4.7: Much more computing resources are required for the Gibbs Sampling algorithm than the fast 

algorithm, which is a sacrifice for better posterior uncertainty quantification. Therefore, the choice between these 

two methods in real applications is a trade-off between the computation time and the level of uncertainty 

quantification and identification accuracy that the user is willing to accept. 

 

 

a 

 

b 

Fig. 2. Post burn-in samples for some posterior stiffness parameters for the Config. 5 scenario, plotted in: a – {𝜃1,−𝑦, 𝜃2,−𝑦}; b 

–{𝜃3,−𝑦 , 𝜃4,−𝑦} spaces. 

 

5 Concluding remarks 

Probability logic combined with a Bayesian approach provides a rigorous framework to quantify modeling 

uncertainty in model updating in structural health monitoring. It allows plausible reasoning about structural 

behavior based on incomplete information. A key concept is a stochastic system model class which defines the 

fundamental probability models that allow robust stochastic structural analyses to be performed. Such a model 

class can be constructed by stochastic embedding of any deterministic model of the structure’s input-output 

behavior. One distinguishing aspect of the proposed Bayesian framework is marginalization of posterior PDFs, 

where instead of seeking to estimate all ‘nuisance’ parameters in the models, we attempt to integrate them out. 

This allows us to assess the relative plausibility of each model within a set of candidate model classes 

chosen to represent the uncertain structural behavior. Applying Bayes’ Theorem at the model class level 
automatically penalizes models that are too simple (“under-fit” the data) and too complex (“over-fit” the data), 

which is the Bayesian Ockham Razor at work. The quantitative implementation of Ockham's Razor is a natural 

consequence of applying Bayesian updating at the model class level. 

Sparse Bayesian learning is an effective strategy to incorporate sparseness during model updating by 

automatically implementing Ockham’s Razor. This alleviates ill-conditioning and ill-posedness in the inverse 

problem in system identification. Recently developed sparse Bayesian learning algorithms for model updating 

and system identification have been briefly reviewed and illustrated using identified modal data. A promising 

performance of the algorithms has been shown by the illustrative results.  
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a b 

Fig. 3. Estimated damage probability curves for each substructure by running: a –Fast algorithm in Subsection 5.1.2;  b – 

Gibbs Sampling algorithm in Subsection 4.3 using 4,000 post burn-in samples. 
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