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Abstract. The aim of this review paper is to summarize available options for decision-support toward 

the optimal management of infrastructure systems under consideration of uncertainties. Thereafter, we 

elaborate on a particular variant, namely Partially Observable Markov Decision Processes (POMDP), 

as a flexible framework for the incorporation of information from observations (visual inspections, 

non-destructive testing and monitoring) in the context of optimal inspection and maintenance planning. 

Examples from the literature are presented, demonstrating the potential of planning under uncertainty 

and the links to the Value of Information (VoI) from Structural Health Monitoring (SHM). 

Keywords: Optimal Inspection and Maintenance Planning, Structural Health Monitoring 

(SHM), Value of Information (VoI), Markov Decision Processes (MDPs), Partially Observable 

Markov Decision Processes (POMDPs)  

1 Introduction  

Structures and infrastructure systems face challenges due to aging, deterioration and adverse 

operational conditions. Recent technological advances have allowed for development of Structural 

Health Monitoring (SHM) systems, which provide information on the “health” state of structural 

systems, and may be exploited to derive indicators of corresponding performance. SHM systems may 

therefore serve for supporting decisions regarding the management of infrastructure systems 

throughout their life-cycle. Such decisions pertain to the planning of appropriate inspection and 

maintenance actions in evidence of damage or deterioration. To address these challenges effectively 

and scientifically, new methods and tools are needed to quantify and optimize the Value of 

Information (VoI) from the SHM systems. 

As part of COST Action TU1402, Working Group 3 aims at identifying developing and critically 

overviewing methods and tools required for the utilization of the theoretical VoI framework in 

infrastructure practice. Such methods take basis in modern methods of probabilistic systems analysis 

including Fully and Partially Observable Markov Decision Processes, Semi Markov Decision 

Processes, Bayesian Networks, Monte Carlo simulation schemes, Stochastic Meshing Algorithms, 

First Order Reliability Methods, and combinations thereof. The Influence Diagram offered in Fig. 1 

illustrates the separate components involved in the Value of Information framework within the context 

of SHM (Straub et al., 2017). 

The goal of such a framework is to provide support for optimal maintenance and intervention 

planning. Consider the example of a bridge object, where the goal lies in assurance of a desired service 

quality with minimum interruptions. In such a case, bridge owners launch preventive actions when the 

risk of service impairment, interruption or losses in life cycle costs reaches some predefined level. 

Implicitly the owners define the accepted risk based on socio-economic equity principles. This 

accepted risk depends upon the established performance goals for each component or combination of 

bridge components and together with the costs implied for every action (in the form of inspection or 
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intervention) governs the policy to be followed for management of the system. In this context, as part 

of COST Action TU1406, Working Group 3 aims in defining the steps required for setting up Quality 

Control (QC) plans for diverse types of roadway bridges.  

 

Fig. 1. Influence diagram (ID) of the Value of Information for SHM. Structural parameters and models are indicated in green, 

SHM parameters and models are denoted in orange, while repair, maintenance and related actions are marked in red. The 

yellow bubbles are the analysis methods and tools used in the different parts of the process. The box [t+1] indicates that the 

edge is from one time step to the next, hence this ID represents a decision process in time. Figure from Straub et al. (2017). 

In existing literature, several approaches have been formulated to tackle the previously described 

problem of decision-making for infrastructure. A first take lies in casting this in an optimization 

framework, where the decision maker may choose to either optimize for separate objectives, usually 

tied to corresponding performance indicators, e.g. condition, availability, safety, or durability (Liu et 

al., 1997; Miyamoto et al., 2000; Furuta et al., 2004), or instead decide to simultaneously treat 

conflicting objectives. When adopting a Multi-Criteria Decision-Making (MCDM) approach, the 

preferred policy structure of the decision maker is adopted to transform the multiple objectives into a 

single optimization function. Approaches of this class, as summarized in Adiel Teixeira de Almeida et 

al. (2015), include single criterion-synthesis methods such as the Multi-attribute Utility Theory and the 

Multi-attribute Value Theory (Keeney & Raiffa, 1976), outranking methods such as Elimination and 

Choice Expressing Reality (ELECTRE) described in Figueira et al. (2005) and the Preference Ranking 

Organization Method for Enrichment of Evaluations (PROMETHEE) overviewed by Brans & 

Mareschal (2005), as well as further alternatives. As another option, multi-objective optimization may 

be employed to tackle multiple objectives, delivering a set of compromising decision options along the 

so-called Pareto front. To this end, Liu and Frangopol (2005) employ multi-objective optimization to 

solve the combinatorial optimization problem of annual prioritization of maintenance efforts for 

deteriorating components of concrete bridges. Taflanidis & Beck (2008) proposed a robust stochastic 

design framework in the context of reliability analysis and related decision support, where 

probabilistic models of excitation uncertainties and system modeling uncertainties can be introduced. 

The two-stage framework implements Stochastic Subset Optimization (SSO) for identifying a region 

of interest in the design space, and a stochastic optimization algorithm to finally identify the optimal 

solution. 
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An issue that inevitably enters the decision-making process is that of uncertainties (aleatory or 

epistemic). In this respect engineering decision problems may be classified into three main categories, 

namely those of prior, posterior, or pre-posterior decision problems, as elaborated upon by Faber 

(2005). Pure prior and posterior decision problems, as for instance calibration of code format or 

service life extension, may be solved using standard approaches of Quantitative Risk Analysis (QRA) 

and Structural Reliability Analysis (SRA). However, efficient treatment of the broader pre-posterior 

decision class, which includes the problem of inspection and maintenance planning, necessitates 

dedicated tools (Faber, 2003; Sørensen, 2009), such as Bayesian Probabilistic Networks and Influence 

Diagrams (Heckerman, 1995). In this work, we elaborate on a candidate approach, namely Partially 

Observable Markov Decision Processes (POMDPs). Markov Decision Processes (MDPs) have been 

widely adopted across diverse domains of engineering and applied sciences in the context of decision-

making. A POMDP is in essence a generalization of a Markov Decision Process (MDP), where the 

decision-maker does not hold complete, i.e., deterministic, information on the system state (condition), 

as well as on the outcome of the performed inspections/actions.  

2 An MDP approach to Decision-making 

The motivation behind utilization of the POMDP framework lies in its capability to (i) incorporate 

stochastic models and uncertain data based on firm mathematical foundations, (ii) to optimize across 

long-term objectives, and (iii) to incorporate near-real-time observations allowing for near-real-time 

optimal decision support. 

2.1 Markov Decision Processes (MDPs) 

A MDP comprises the following basic components: i) the states, which in the context of infrastructure 

may be tied to indicators of the system’s performance or condition (Limongelli et al., 2005); ii) a set of 

actions, commonly pertaining to interventions (repair, retrofitting, replacement); iii) the consequences 

of actions on the system’s state; and iv) the value/cost of these actions (Cassandra et al., 2005). The 

MDPs abide to the Markov assumption, implying that the state at a given decision (time) step is 

uniquely determined by the previous state.  Various solution methods have been developed for MDP 

problems, with Value Iteration (Bellman, 1957) and Policy Iteration (Howard,1960) algorithms 

holding the lead. 

MDPs have long served as tools for decision support. As an example of such a use-case, the Swiss 

Federal Roads Office employs MDPs for bridge management, as part of the KUBA software (Hajdin, 

2008). In KUBA-MS, the assessment units are structural elements, which may be further divided into 

segments. An influence indicator is linked to each segment, according to its exposure to environmental 

influences. Prevalent deterioration processes are identified and resulting states are rated according to a 

five-scale classification system, ranging from 1 (good condition, i.e., no damages) to 5 (alarming 

condition, i.e., urgent actions necessary). Markov chains are used to obtain condition forecasts and 

MDP use used to determine optimum preservation policies (Fig. 2). The transition matrices result from 

statistical analysis of inspection data (Hajdin & Peeters, 2008). 

 

Fig. 2. KUBA-MS Optimization on the element level. Figure reused from (Hajdin, 2008). 

http://onlinelibrary.wiley.com/doi/10.1002/we.344/abstract
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2.2 Partially Observable Markov Decision Processes (POMDPs) 

MDPs operate on the assumption of complete (deterministic) knowledge of the system’s state, which 

is hardly ever the case. An educated estimate on the condition of the system may be delivered via 

inspection, non-destructive evaluation or monitoring technologies; none of these options however 

provide complete and exact information on the system’s state. To address this challenge, Partially 

Observable Markov Decision Processes (POMDPs) relax the MDP assumption to consider 

probabilistic knowledge of the state, allowing for the analysis of decision-making under uncertain 

observations.  

The POMDP describes the interaction of an agent, in this case a structure, with its surrounding world 

via the tuple{ , , , , , }S A T O R : 

S : A set of (usually discrete) system states. 

A : A set of possible, usually discrete, control actions. 

T : A transition model describes the evolution of the system from a state 
is at step i to a future state 

1is  , as a consequence of an executed action a . The system’s state is updated using the conditional 

probability  1 | ,i ip s s a
. 

 : A set of (usually discrete) observations describing the outcome of an inspection or monitoring 

method. 

 : The observation model defines the probability of obtaining an observation outcome   when the 

system lies in state s , i.e.,  |p o s .  

R : A reward (or cost) function outputs a reward value as r . The reward may be modeled as 

dependent upon the current state, the assumed action or a combination of both. 

The POMDP process is summarized as indicated in Fig. 3. The agent initiates at a state 
is . An 

observation 
io is taken, motivating execution of action ia , shifting the system's state to 

1is 
, which 

results in a reward ir . The state is only partially known due to the uncertainties involved in the 

system’s observation, thus it may only be described in terms of a belief (a probability distribution) 

over the state-space. Once the system evolves due to the agent's action, the belief state is updated 

based on the previous belief state, the executed action, and the received observation. This is performed 

by employing Bayes' rule: 

 
, 1

1 1

( | )
( ) ( | , ) ( )

( | , )
i

a o i
i i i i

s S

p o s
b s p s s a b s

p o a


 



 
b

  (1) 

where ,a   designate the executed control action and inspection (observation), respectively,  ib s  is 

the current belief state describing our confidence in the system lying in state 
is . 

 

Fig. 3. The POMDP sequential decision process with alternating actions and inspections. 
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3 POMDP Solution Methods 

Discrete POMDPs may be solved via a number of available solution algorithms (Poupart and Boutilier 

2004, Sondik 1971). Most of these methods are approximate and rely on sampling of the belief space 

and propagation of these samples through the sequential planning process (observations, actions). 

Given the belief state b in a time horizon n, i.e., when n decision steps or decision intervals are left, 

and the updated belief state in horizon n-1, the optimal value function at horizon n is calculated in a 

recursive manner, as ( ) max ( , )n a nV Q ab b , where the expected reward 
nQ  for a given belief state 

 b s  and action a   is ,

1( , ) ( ) ( ) ( | , ) ( )a o

n a ns S o
Q a r s b s p o a V 

  b b b , where [0,1)   is the 

discount factor, which weighs the significance of the immediate in comparison to the delayed reward, 
,

1( )a o

nV  b is the optimal value function of the previous horizon depending on the belief state b , the 

current action a , and the observation  .  

The goal of planning is to maximize the future expected reward by selecting an appropriate policy *

, i.e., a sequence of actions and observations that maximizes the value function.  

 

Fig. 4. Optimal a -vectors plotted in the belief space. Figure reused 

from Papakonstantinou & Shinozuka (2014a) 

Sondik (1971) proved that the recursive 

calculation of the value function in a 

discrete system degenerates in the search 

for the so-called optimal a -vectors, each 

representing the value function for an 

optimal strategy at the current planning 

horizon n  and for a set of belief states 

 b s .  

The belief space is a simplex, and each 

vector defines a region over the simplex, 

which represents a set of belief states. The 

value function is generally defined as the 

upper surface of these vectors.  

The problem may be solved by means of Value iteration and Policy iteration algorithms; further 

alternatives are described in Papakonstantinou & Shinozuka (2014a). The POMDP problem may also 

be cast in the continuous space, as elaborated upon in the work of Schöbi & Chatzi (2016). This allows 

for more flexible formulations able to account for generic, nonlinear actions and observations. In this 

case, solution methods include policy search (Ng & Jordan, 2000), or grid- and point-based value 

iteration algorithms, that are extended to fit the continuous space (Porta et al., 2004). 

4 POMDP Implementation in Infrastructure Management 

POMDPs admittedly remain less popular than their MDP alternative in the domain of infrastructure 

planning and policy making, largely owing to their higher computational complexity. However, they 

offer numerous advantages, some of which are inherited from MDPs, such as flexibility in terms of 

formulation, functionality in both a discrete or continuous setting, inclusion of periodic and aperiodic 

inspection intervals,  perfect  and  imperfect  inspections,  deterministic  and probabilistic actions, 

stationary  and  non-stationary  environments (also treatable within a semi-Markovian context),  as 

well as planning in an infinite  or finite decision horizon.  In an early work, Madanat & Ben-Akiva 

(1994) adopt POMDPs for decision-making for highway-pavement networks. Ellis  et  al. (1995), and  

Corotis  et  al. (2005) demonstrate use of POMDPs for bridge inspection planning. Papakonstantinou 

& Shinozuka (2014a, 2014b) provide a thorough overview of solvers suited for solution of large-scale 

and more realistic problems.  

In an example from (Papakonstantinou & Shinozuka, 2014b), a POMDP policy is described for 

decision support in the face of corrosion of the steel in a reinforced concrete wharf deck slab. A spatial 

stochastic corrosion model is used, as specified in (Papakonstantinou & Shinozuka, 2013), which 

defines the transition probability matrix. In accordance with AASHTO specifications, four discrete 

states (conditions) are assumed: condition 1 (less than 10% damage), condition 2 (damage between 
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10%- 25%), condition 3 (damage between 25%-50%), and finally condition 4 (over 50% damage). 

Implementation of the POMDP algorithm is exemplified in Fig. 5 for two consecutive steps of one 

possible state evolution scenario. In decision step 119 (top plot) the structure actually lies in condition 

2, while the decision-maker attributes a mere 28% to this condition. The POMDP computed policy 

indicates a visual-inspection at the beginning of the next step. Once this is carried out, the belief is 

then updated to 81.20% with respect to the possibility that the system (indeed) lies in condition 2. For 

this belief state, the computed policy plan suggests execution of a minor repair action and 

subsequently indicates that visual inspection should be chosen as a cost-effective observation option, 

which will eventually witness the shift of the structure in the improved condition level 1. 

 

Available policy options: 

replace and no-inspection 

major-repair and monitoring-

inspection 

major-repair and visual-inspection 

major-repair and no-inspection 

minor-repair and monitoring-

inspection 

minor-repair and visual-inspection 

minor-repair and no-inspection 

no-repair and monitoring-inspection 

no-repair and visual-inspection 

no-repair and no-inspection 

 

Fig 5. Detailed look at two consecutive policy steps (top to bottom) according to the POMDP computed policy. Figure reused 

from (Papakonstantinou & Shinozuka, 2014c). 

 

The sequence of policy steps illustrated in Fig. 5 reflects a typical policy planning scenario for 

infrastructure management; the optimal policy typically favors major-repair actions in early stages, 

taking advantage of the improved and low deterioration rates. Instead, as demonstrated in a related 

example (Papakonstantinou et al., 2016), in the case where availability of permanent monitoring data 

is assumed, the algorithm will tend to exploit the more precise (in comparison to the visual-inspection) 

information provided by the monitoring system, and strategically suggest more frequent and 

inexpensive minor repair actions. The latter pro-actively prevents the evolution of severe damage, thus 

alleviating eventual need for replacement. 
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Fig. 6. Policy map for horizon 3 of the bridge maintenance 

problem in Schöbi & Chatzi (2016). 

A valuable outcome of the POMDP 

policy planning process, lies in the 

possibility to produce decision maps, as 

illustrated for the continuous POMDP 

equivalent in Schöbi and Chatzi (2016). 

Once an indicator of the system’s 

condition (state) is established, then the 

belief vector may be summarized via the 

first two moments (mean and variance).  

Consequently, in a finite horizon problem 

setting, an optimal policy map may be 

formulated per horizon n, as illustrated in 

Fig. 6, indicating a recommended action 

(intervention) and corresponding 

inspection. Such policy maps may be 

exploited as decision support tools by 

operators and decision-makers. 

POMDPs may further be extended to tackle problems of multiple components or systems, as 

exemplified in Memarzadeh & Pozzi (2016). The provided example on a farm of 25 wind turbine 

components reveals the importance of availability of observations from these components, in the form 

of inspections, for cost-effective management of the farm. However, POMDP are limited when 

considering the joint optimization of inspections and monitoring in a redundant structural system, due 

to computational costs. In this case, approximate solutions through heuristic policies may provide a 

pragmatic solution (Luque and Straub, under review). 

5 Conclusions & Outlook 

This review work outlines available alternatives for decision-making under uncertainty, shedding 

focus on the POMDP variant. This tool employs estimates on the condition of the system, extracted by 

means of uncertain or incomplete observations, for policy planning under the influence of 

deterioration processes, while assuming availability of actions whose effects are stochastic. Although 

not so far exploited in this sense, POMDPs and their computed optimal policy trajectories could be 

utilized in order to feed the components of pre-posterior analysis tools for quantifying the Value of 

Information of Structural Health Monitoring systems. This is to be explored as a next research 

direction by the authoring team. 
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