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Abstract. The parameters relevant for prediction of service lifetime with respect to chloride ingress  

are associated with large uncertainties. Full-scale measurements are in demand for conditions which 

are as homogeneous as possible. The present paper first summarizes statistical distributions which are 

obtained based on measurements from the Gimsøystraumen bridge in Norway. A large number of 

chloride profiles are available, and for each of these the diffusion coefficient and surface concentration 

(due to sea-spray) are estimated. Extensive measurements of concrete cover are also performed. These 

probability distributions are subsequently employed as input to a prediction model for chloride 

concentration at the steel reinforcement for a single but arbitrary position along the reinforment. Since 

the input parameters are represented in probabilistic terms, the chloride concentration is also a 

stochastic quantity. Furthermore, introducing the critical chloride concentration on a similar form, the 

probability of exceeding the critical threshold is determined as a function of time.  

In order to address chloride attack on the entire bridge, a system model with 90 components is next 

introduced. This model is employed in order to perform reliability updating based on observations at a 

number of sites along the bridge. First-order (FORM) reliability methods typically become inaccurate 

for large systems of this type. Crude Monte Carlo Simulation (which can be more accurate) will easily  

demand impractical efforts in terms of CPU-time, and a more efficient Monte Carlo simulation method 

is accordingly applied. It is shown that this typically reduces computation times by a factor of around 

10. 

     Keywords: System reliability; Enhanced Monte Carlo; Chloride ingress; Bridge test data.  

1 Introduction  

A large number of chloride profiles have been obtained from the Gimsøystraumen bridge which is 

located in the Northern part of Norway. For the superstructure profiles from 725 locations were 

collected. For the columns sampling was performed for 168 locations (Skjølsvold, 2001). For each of 

the profiles, the corresponding diffusion coefficient and the chloride surface concentration were 

estimated. Extensive measurements of concrete cover were also performed. (Note: The values for 

statistical values given herein may deviate slightly from those of (Skjølsvold, 2001) due to further 

refinement of the chloride profile data in that report). 

The corresponding probability distributions are subsequently employed as input to a model for 

prediction of chloride concentration at the steel reinforcement. As the input parameters are represented 

in probabilistic terms, the chloride concentration accordingly becomes a stochastic quantity. The 

critical chloride concentration is also introduced on a similar form. As the next step, the resulting 

probability that the concentration at the reinforcement exceeds the critical threshold is then determined 

as a function of time, see also (Hynne et. al., 2001). Parameter variations are performed with respect to 

the input statistical models. In particular, the effect of introducing a diffusion coefficient which varies 

with time is investigated.   

In order to address chloride attack on the entire bridge, a system model with 90 components is next 

introduced. This model is employed in order to perform reliability updating based on observations at a 

number of sites along the bridge. The computations are performed by application of the so-called 

enhanced Monte Carlo simulation method (Næss et. al., 2009 & 2012).     
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2 Probabilistic modelling based on full-scale measurements 

2.1 General 

The Gimsøystraumen bridge is located in the Lofoten area in Northern Norway, see Figure 1. This 

bridge has served as a “test bridge” for many purposes including assessment of different types of 

repair methods. 

 

                               

                                 Fig 1. The Gimsøystraumen bridge in Northern Norway (Lofoten area) 

 

The objective of the present study is to assess the merits of relevant probabilistic models based on full-

scale data and to show how they can be applied for the purpose of lifetime assessment with respect to 

chloride ingress.  

Furthermore, it is intended to illustrate how information from monitoring and inspection can serve the 

purpose of reliability updating.   In order to achieve a realistic model of the entire bridge structure, a 

system model is subsequently established. As computation of the corresponding system reliability as a 

function of time easily becomes quite demanding, it is also demonstrated how so-called enhanced 

Monte Carlo Techniques can serve to make calculation of the structural reliability more efficient than 

the crude Monte Carlo techniques (abbreviated simply as MC) 

    

2.2 Statistical analysis of test data 

For each of the three parameters that were measured or estimated based on the measurements (i.e. 

diffusion coefficient, surface concentration and concrete cover), the applicability of various analytical 

probability distributions were tested by plotting in different types of probability paper. A ranking was 

performed based on the regression coefficients. As an example, a summary of the results are shown in 

Table 1 for the diffusion coefficients obtained for the east side of the columns.  

 

Table 1. Diffusion coefficient (Multiplication by 10-12  gives the values in m2/s) 

Prob. model Regression line Mean 

value 

Standard 

deviation 

Sample 

variance 

R2 

Normal y = 1.6051x – 2.0384  

      

     1.27 

 

  

       0.64 

 

 

   0.41 

0.9815 

Gamma y = 0.7388x – 0.6466 0.7934 

Gumbel y = 2.1481x – 2.1085 0.9899 

Weibull y = 2.3307x – 0.8316 0.9948 

Lognormal y = 1.9765x – 0.1641 0.9809 
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As observed, the Weibull distribution gives the highest regression coefficient, R
2
. The measured and 

analytical distribution functions as plotted in Weibull probability paper are compared in Figure 2. 

However, in general all the different distributions give quite high values for the regression coefficient.    

 

Fig. 2.  Comparison between sample distribution function and fitted Weibull distribution for the diffusion coefficient, east 

side of columns. 

 

A more direct comparison between the analytical model and the observed data is provided by 

considering the density function, i.e. the expected number versus the observed number of samples 

within each discretized interval. Such a comparison is provided by Figure 3.  The overall comparison 

is quite good, but with some “oscillations” around the theoretical curve 

 

Fig. 3. Observed versus predicted number of samples for the diffusion coefficient within each interval, east side of columns. 

Theoretical model is based on regression curve in Figure 2. 

 

Although the Weibull model gave the best fit for this specific case, it is found that on the average, the 

lognormal probability distribution gives the best fitting. Furthermore, there are reasons of convenience 

for selecting this model when calculating the probabilistic lifetime distributions. Hence, the lognormal 

distribution is applied for the present calculations of lifetime distributions. 
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The regression coefficients obtained from a similar fitting of probability distributions for the chloride 

surface concentration are shown in Table 2. It is observed that the lognormal distribution gives the 

highest value for the regression coefficient. However, all the distributions have regression coefficients 

higher than 0.9, which in general is quite acceptable. 

 

 Table 2.   Surface concentration, Cs (% of concrete weight) 

Probabilistic  model Regression line Mean 

value 

Standard 

deviation 

Sample 

variance 

R2 

Normal y = 3.5447x – 1.5979  

 

     0.50 

 

 

      0.34 

 

 

      0.11 

0.9156 

Gamma y = 1.4932x – 0.3422 0.9352 

Gumbel y = 4.0841x – 1.3635 0.9716 

Weibull y = 1.9038x + 1.2355 0.9338 

Lognormal y = 1.4879x + 1.3571 0.9826 

 

The corresponding sample distribution function and the fitted lognormal model are shown in Figure 4. 

It is seen that the upper part of the empirical distribution (which is most relevant for the shortest 

lifetimes) is also fitted well by this analytical model. 

 

Fig. 4. Cumulative distributions for measured surface concentration plotted in lognormal scale, and resulting fitted lognormal 

model. West side of columns. 

 

Measurements of concrete cover depth were also performed. A lognormal model was found to give the 

best fit to the measurements.  Based on the full-scale measurements and consideration of the additional 

parameters entering into the computation of chloride lifetime, corresponding probabilistic models are 

established. The relevant parameters are defined in relation to the solution of Fick’s second law for the 

chloride concentration c(x,t) at position x and at time t: 


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where ci is the  initial chloride concentration in the concrete, cs is the chloride concentration at the 

surface, and D is the diffusion coefficient.  The concentration at the position of the reinforcement is 

subsequently compared to the critical chloride concentration for onset of corrosion. The diffusion 

coefficient may furthermore be time-dependent. The time variation is here expressed by the so-called 

alfa-factor (Maage et. al., 1994 and Poulsen, 1996).   The value of the alfa-factor influences the time 

variation of the diffusion coefficient through the following expression: (talfa). Accordingly, alfa equal 

to zero corresponds to a constant diffusion coefficient while alfa = 1 corresponds to a linear increase 

with time etc.    
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The probabilistic models which applied for the superstructure are summarized in Table 3. The model 

uncertainty factor which occurs both in Table 3 and Table 4 is introduced in order to account for 

deviations between model predictions and observed diffusion rates. The lowest value is taken to 

represent lifetime calculations performed for the bridge from which the measurement were performed. 

The highest value could e.g. represent a situation where these particular data were applied for 

calculations of a “similar” bridge.   

 

Table 3. Statistical distributions for superstructure 

Statistical variable Distribution  type Mean value Standard deviation 
Surface concentration Lognormal 0.25 (% concrete weight) 0.18 (% concrete weight) 

Diffusion  coefficient Lognormal 0.88 (m2/sec, mult 10-12)  0.68 (m2/sec, mult 10-12)  

-factor (time-var. of diff. coef.)  Deterministic 0.0  - 

Initial concentration Normal 0.015 (% concr. wght.) 0.0015 (% concrete weight) 

Concrete cover Lognormal 23 mm     6 mm 

Critical chloride concentration Lognormal 0.18 (% concr. weight) 0.06 (% concrete weight) 

Model uncertainty Normal 1.0 0.01/0.10 

 

Corresponding models which apply to the columns are given in Table 4. As observed, both the 

diffusion coefficient and the surface concentration are higher for this case. However, the concrete 

cover is also considerably thicker than for the superstructure. 

Table 4.  Statistical distributions for columns  

Statistical variable Distribution type Mean value Standard deviation 
Surface concentration Lognormal 0.50 (% concrete weight) 0.34 (% concrete weight) 

Diffusion coefficient Lognormal 1.27 (m2/sec, mult 10-12)  0.64 (m2/sec, mult 10-12)  

-factor (time variation) Deterministic 0.0  - 

Initial concentration Uniform 0.015 (% concrete weight) 0.0015 (% concrete weight) 

Concrete cover Lognormal 45 mm     6 mm 

Critical chloride concentration Lognormal 0.18 (% concrete weight) 0.06(%  concrete weight) 

Model uncertainty Normal 1.0 0.01/0.10 

 

3.  Lifetime distributions based on the measured data 

3.1 Base case analysis 

The cumulative distribution functions for chloride lifetime which are obtained by calculating 

probabilities of the type: P(chloride concentration at reinforcement  at time t <  critical chloride 

concentration). These probabilities are computed repeatedly for a number of different values of the 

time parameter. The calculations are performed by application of so-called First Order Reliability 

Methods (FORM), see e.g. (Madsen et. al. 1986). 

The probability distribution that results from reliability analysis based on the input data given in Table 

3 (superstructure), is shown in Figure 5. The corresponding probability density function is obtained by 

numerical differentiation and is given in Figure 6. As observed, the peak of the latter occurs for a 

lifetime of 6 years. However, the shape of the upper tail is such that it decays very slowly. This 

implies a large standard deviation for the lifetime. This is also reflected by the distribution function 

rising very slowly. 

This distribution function obtains a value of 0.4 for a duration of 80 years. This implies that the 

probability for the lifetime to be smaller than this value is 40%. 
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Fig. 5 Probability distribution of lifetime (superstructure) corresponding to input statistical models given in Table 3. 

 

 

 

 

 

 

 

 

 

 

           Fig. 6. Probability density function obtained by differentiation of distribution function in Figure 5. 

 

3.2 Parametric variations 

The effect of varying the statistical parameters of the input models can be readily studied. The effect 

of including a probabilistic time varying diffusion is accounted for by introducing the alfa-parameter 

as discussed above. This is presently done by modelling this parameter as a random variable. The 

mean value is taken to be 0.4, and the standard deviation is 0.1. A lognormal distribution is assumed to 

apply.  The resulting cumulative distribution of the lifetime and the corresponding density function are 

shown in Figures 7  and 8. These should be compared to the distribution and density functions 

presented in Figures 5 and 6.  

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Cumulative distribution function for chloride lifetime. Alfa-parameter which defines variation of diffusion coefficient 

with time is represented by a lognormal distribution with mean value 0.4 and a standard deviation of  0.1 
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Fig. 8. Probability density function corresponding to the distribution function in Figure 7. 

 

The peak of the density function is still located at 6 years. However, the peak is now much smaller 

than in Figure 6. The upper tail of the density is also higher, and the corresponding distribution 

function in Figure 7 is “stretched” towards higher lifetimes as could be anticipated.  

 

 

4. Reliability updating for system model of entire bridge structure by enhanced Monte 

Carlo simulation 

4.1 General 

The analysis so far has basically been relevant for only a single “spot” or “component”. A more 

realistic model corresponds to analysis of the whole bridge structure, which implies that assessment of 

the corresponding system reliability needs to be made. 

This requires a more complex analysis where FORM/SORM techniques easily become inadequate, or 

at least inaccurate. Resort must typically be made to Monte Carlo simulation methods which can 

provide more accurate results, but which at the same time are quite demanding with respect to 

computation time. 

This calls for more efficient simulation methods, and in the present study the enhanced Monte Carlo 

simulation technique (which was referred to above) is applied. In general, this approach is based on 

introduction of a scaling parameter λ for the limit state function. A scaling factor of 1.0 corresponds to 

the “true” failure function while a value smaller than one leads to higher failure probabilities (i.e. a 

less reliable structural system). In the present application, a similar scaling is also introduced for the 

“observation function” which represents additional information that has become available based on 

e.g. monitoring or inspection of the structure. 

 

4.2 Simplified system model of bridge superstructure 

The bridge superstructure is considered to consist of 3 sites (i.e. “components”) in the transverse 

direction and 30 segments in the longitudinal direction, giving at total of 3x30 = 90 components. In the 

transverse direction, each component represents the chloride ingress for one of the “faces” of the box 

girder, i.e. the windward face, the downward face and the leeward face. The roadway itself is not 

Probability density function 

Probability density 

Time 
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included as the surface chloride concentration is much lower for this part then the others. In the 

longitudinal direction, each component represents a certain length segment of each of the faces. 

A simplified analysis is applied where only the surface concentration is represented as a random 

variable (while the other random variables are modelled as deterministic quantities equal to the mean 

values of the corresponding variables in the table above). The initial chloride concentration at the steel 

armour is set to zero.   

For this purpose, the surface chloride concentration is represented by a mean value of 0.14% and a 

standard deviation of 0.028 %. (Instead of lognormal model, a Gaussian model is applied which is 

truncated at a value of 0.1% for the surface concentration). These values correspond to a situation 

where the failure probability for a single component as well as the entire bridge system is much 

smaller than for the previous case where models based on full-scale observations for the particular 

bridge were applied.  

Presently, identical values are applied for the surface concentration of all “components” and 

accordingly the failure functions are the same for all the components. However, the concentrations at 

different sites are assumed to be completely independent from each other which implies that 90 

independent random variables are introduced.   

 

4.3 Reliability updating based on inspection of surface concentration 

First a system reliability analysis is performed based on the assumptions described above. 

Furthermore, a system failure probability is evaluated at a time in operation of t= 60 years. The 

corresponding failure probability is shown as a function of the scaling parameter in Figure 9 below for 

the case that no additional information from monitoring or inspection is available. The 95% 

confidence band is also shown as represented by the upper and lower curves. 

                                              

Figure 9. Failure probability as a function of the scaling parameter at a time of t = 60 years without any additional 

information (from monitoring or inspection) being available. 

 

The corresponding estimated failure probability for the system with 90 components (i.e. for the scaling 

parameter λ= 1.0) is computed as 5.72e-4 with the 95% confidence interval being (4.78e-4, 6.58e-4 ). 

This implies that the coefficient of variation for the estimated failure probability is around 5%. The 

total number of samples is 32000, which corresponds to a reduction by a factor of around twenty as 

compared to what would be required by crude Monte Carlo simulation in order to achieve the same 

level of accuracy.  

It is next assumed that the surface concentrations for half the components are found to be lower than 

the mean value plus two standard deviations, i.e. 0.196%. The results based on enhanced Monte Carlo 
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simulation for the new updated failure probability at t = 60 years are shown in Figure 10 for increasing 

values of the scaling parameter(which is applied both for the failure function and for the observation 

function). 

                               

Figure 10. Failure probability as a function of the scaling parameter for system with 90 components subjected to chloride 

ingress. Failure probability at t = 60 years for the case that the surface concentrations for half the components are found to be 

smaller than 0.196%. 

 

The estimated failure probability for the system with 90 components (i.e. for the scaling parameter λ= 

1.0) is now found to be 5.26e-4 with the 95% confidence interval being (3.53e-4, 6.93e-4). This 

implies that the coefficient of variation for the estimated failure probability is around 15%. The total 

number of samples is 16000, which also now corresponds to a reduction by a factor of six as compared 

to what would be required by crude Monte Carlo simulation.  

We next assume that the surface chloride concentration is less than the critical value 0.18% (for half 

the “sites/components”). The results for this case are shown in Figure 11. 

                                          

Figure 11. Failure probability as a function of the scaling parameter for system with 90 components subjected to chloride 

ingress. Failure probability at t = 60 years for the case that the surface concentrations for half the components are found to be 

smaller than 0.18%. 

 

The estimated failure probability for the system with 90 components (i.e. for the scaling parameter λ= 

1.0) is now found to be 3.52e-4 with the 95% confidence interval being (2.57e-4, 4.48e-4). This 

implies that the coefficient of variation for the estimated failure probability again is around 15%. The 
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total number of samples is 20 000, which still corresponds to a reduction by a factor of six as 

compared to crude Monte Carlo simulation.  

For the present analysis, independence between the “components” was assumed. The corresponding 

effect of having additional information on the resulting system reliability was a reduction of the failure 

probability roughly by a factor of three. If correlation between the components was introduced the 

effect would be much more pronounced. If full correlation would apply, this essentially means that 

there is only a single component in the system rather than 90. Accordingly, the failure probability 

would be reduced by a similar factor even if only a single component was inspected.  

 

5. Concluding remarks    

In the present paper, probabilistic models based on full-scale measurements from the Gimsøystraumen 

bridge are addressed. These models apply to the diffusion coefficient, the chloride surface 

concentration and the concrete cover. Based on these models and supplementary models for other 

parameters affecting chloride diffusion, probabilistic lifetime calculations are performed. 

A system reliability analysis method was introduced and subsequent reliability updating was 

performed by means of enhanced Monte Carlo simulation. As a general observation, it was found that 

the computational effort (as measured by CPU-time) was typically reduced by a factor of six. 

There are clearly multiple future research topics that should be addressed. Examples are: The effect of 

correlation between the system components in connection with the updated reliability, the effect of 

non-identical system components, combination of parallel and series system models of bridge systems 

and Ultimate Limit State criteria in addition to Serviceability criteria. 
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