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Abstract. Structural reliability assessment is largely influenced by the spatial variability of material 

properties or defaults; however, there are still various challenges for their characterization and 

modeling. Structural Health Monitoring (SHM) could provide useful information in space and time for 

spatial variability characterization of material properties and mechanical solicitations; nevertheless, 

this challenge is arduous because of the large number of potential sensor positions of local 

disruptions/failures. This paper proposes a methodology to optimize the spatial distribution of 

embedded sensors used for spatial variability assessment of stationary random fields. The optimization 

criterion relies on the width of the confidence interval of statistics for the characteristics to identify. 

For sake of simplicity, the paper illustrates the method for one-dimensional problems. The proposed 

method is applied firstly to a numerical example were several hypothetical structural configurations 

that could be found in practice are studied. It is finally applied to two case studies (a reinforced 

concrete beam and a steel wharf) where water content and loss of steel thickness are respectively 

measured. The results show that the stationary property is useful to deduce the minimum quantity of 

sensors and their position for a given quality requirement.  They also allow us to propose a criterion for 

defining if regular or non-regular spacing of sensors along the inspection zone is more appropriate 

depending on the component length and autocorrelation structure of the random field.  

Keywords: spatial variability; confidence interval; inspection optimization; stationary field; sensor 

spacing; Structural Health Monitoring 

1 Introduction  

Structural serviceability and safety are influenced by the different sources of uncertainty involved during their 

whole lifetime: material properties, loading, measures, model, deterioration, etc. A probabilistic structural 

analysis that includes the more influential uncertainties is therefore paramount to minimize both failure risks and 

design and maintenance costs. Nowadays, there are significant advances in probabilistic modeling at the scale of 

a single section of the structure. However, various works have demonstrated that the reliability assessment for a 

given component is largely influenced by the spatial variability of material properties or defaults [Stewart, 2004; 

Li et al., 2014; Li, 2004; Srivastava, 2012; O’Connor & Kenshel, 2013; Griffiths & Fenton, 2000; Pasqualini et 

al., 2013]. Although the consideration of spatial variability is essential for proper reliability assessment, there are 

still various challenges for their characterization and modeling.  

Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) could provide useful information in 

space and time for spatial variability characterization of material properties and mechanical solicitations. Several 

studies focused on the use of NDTs for spatial variability characterization at a given time. For example, Nguyen 

et al [Nguyen et al., 2013, 2014] combined several NDT techniques, kriging and variograms to assess the spatial 

variability of concrete at different scales (point, local and global). Gomez-Cardenas et al. [Gomez-Cardenas et 

al., 2015] proposed a two-step approach to optimize the number and position of ultrasound measures required to 

localize critical zones. More recently, Schoefs et al. (2016) proposed a methodology to find an optimal 

inspection configuration (number and localization of NDT measures) that minimizes the error of identification of 

probability distributions for a given quantity of interest (resistance, porosity, water content, etc.) with spatial 

dependency. SHM could be more useful for characterizing the evolution in time of this spatial variability. Most 

part of research efforts in SHM have focused on the spatial localization of defects or damage of structural 

components [Hu et al., 2015; Kuprapha & Warnitchai, 2012]. However, spatial variability characterization of 

loading or material properties from SHM data is still a challenge because of the finite number of sensors and the 

large number of potential positions of local failures or disruptions. Numerical algorithms and specific multi-

sensor systems should be developed towards this aim.   
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Within this framework, the main objective of this paper is to propose a methodology to optimize the spatial 

distribution of embedded sensors used for spatial variability assessment of stationary random fields. Stationary 

random fields have a stochastic structure and probabilistic properties that could be used to provide rational aid 

tools for optimizing the number and location of sensors. The assessment of the shape of the Auto-Correlation 

Function (ACF) is paramount for this spatial variability characterization. 

The paper starts in section 2 with a review of key concepts of spatial random field modeling with a focus on 

stationary random fields. Section 3 describes the proposed method for optimal sensors positioning in order to 

characterize the spatial correlation structure, illustrated with numerical examples and real measurements on a 

reinforced concrete (RC) beam (section 4). 

2 Main assumptions for the stochastic modeling  

In order to simplify the presentation of the proposed methodology, we consider the following main assumptions 

about the sensors and the random field modeling: 

• The stochastic field is considered as: Gaussian, second order stationary, statistically homogeneous and its 

marginal distribution is known. This assumption implies that less information is required for its characterization.  

• Each realization (single trajectory) represents the probabilistic information of all trajectories: mean, 

variance, spatial correlation. A single trajectory is then sufficient to describe the spatial variability, i.e. the 

stationary field is ergodic. 

• A larger number of discrete sensors can be placed over the same component to characterize both 

randomness and spatial variability (e.g., from 20 to 60). We consider in this paper long structures with a 

significant number of sensors (around 200). 

• Sensor measurements are considered as ‘perfect’ according to the definition provided in [Schoefs et al., 

2009]. 

• Damage is not affected by the loading or that the effect of loading on the spatial variability can be modelled. 

Extensions are developed in Schoefs et al. (under review).  

Several approaches can be used to describe a stochastic field Z(x,θ) where x denotes the position and θ the 

hazard: Karhunen-Loève expansion, approximation by Fourier series, EOLE approximation, etc.. This paper uses 

a Karhunen-Loève expansion to model the stochastic field Z(x,θ). This expansion represents a random field as a 

combination of orthogonal functions on a bounded interval. 

3 Sensor placement strategy and goals 

3.1 Definition of the Spatial Correlation Threshold 

The paper focuses on the assessment of the ACF (exponential for example in Eq. (1)) of a stationary field. An 

optimal geo-positioning of sensors along a trajectory (sampling of the random field) should provide an accurate 

assessment of the ACF parameters (i.e. b in Eq. (1)) with a limited number of sensors.  

��Δ�� = ��� 	
�� � , 0 < �   and   Δ� = �� − �� 
(1) 

This exponential ACF will serve r numerical simulations in the following. When looking for the usual shape of a 

correlation function a regular spacing of sensors could not be optimal. If the distance between two sensors Lb is 

large, the decay of autocorrelation for short distances cannot be assessed. On the contrary, if Lb is small, there is 

some information provided for many sensors that will not be useful for the assessment of b. Figure 2 shows that 

it is possible to install different number of sensors for high and low autocorrelation zones to obtain a good 

assessment of the autocorrelation parameter by reducing the total number of sensors Ns. The objective is to get a 

spacing of sensors providing a larger amount of data in the zone of high correlation. However, there is a limited 

feedback on the autocorrelation function (and consequently the value of b) for defining clearly the high 

autocorrelation zones. Section 4 presents a sensitivity study about the influence of the a priori knowledge of b.  

Let us consider a one-dimensional spatial field. The methodology could be applied on a set of trajectories 

representing: (i) a set of 1D components (beams), or (ii) a very long 1D-component subdivided artificially or 

physically (expansion joint or construction joints) in a set of short components, or belonging to a wall structure 

(steel sheet pile or concrete wall). 

In order to limit monitoring costs (number of sensors), we propose to monitor some zones of a trajectory with 

sensors separated by “sufficiently short distance Lb” allowing us to assess the shape of the ACF (Eq. (1)) that is 
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controlled by the parameter b.  This “sufficiently short distance” can be seen as an Inspection Distance 

Threshold (IDT). Thus the non-regular distances of sensors spacing ��  should satisfy: �� ∈ �0, IDT� in the highly 

correlated zones. 

The IDT is defined by assuming that, after a given distance, the events measured from an inspection can be 

assumed as weakly correlated. A Spatial Correlation Threshold (SCT) defines this weak correlation. For 

instance, Schoefs et al. (2016) proposed a value SCT = 0.3 to get fairly correlated events and SCT = 0.5 to get 

high correlated events. For an exponential ACF, the SCT is linked with IDT by: 

IDT = −� ∙ � �SCT� (2) 

This paper considers the value SCT = 0.4 to determine IDT. For example, for this value of SCT and b = 1.0 m, 

IDT = 0.67 m. The effect of this choice is discussed in [Schoefs et al. 2016]. 

3.2 Parametrization of non regular spacing 

In view to reduce the set of potential solutions and simplify the design of the network of sensors, we propose a 

parameterization. It is based on a division of the trajectory (structural component) into np pieces of same size Lm 

and then a subdivision of each piece into a decreasing #$� number of equidistant sensors, with distance �� , 

following a series according to the octree approach. This approach has the advantage to get more information 

(more sensors) for small distances between points where the slope of the auto-correlation function must be fitted 

accurately. The number of sensors in the first piece is computed by: 

#$� = Round* #+1 - ∑ 12�0 − 1�12�3� 4 
(3) 

 

The number of sensors for the pieces #$�, … , #$12
� (i.e., #$�	with i ∈ [2;np–1]) is estimated from: 

#$� = Round 7 #$�2�0 − 1�8 (4) 

The number of sensors for the last piece, #$12, is the remaining number of sensors. Knowing the number of 

sensors in each piece, the distance between sensors in each piece is deduced. To satisfy the condition of 

sufficient correlation between measurements, we should avoid a distance larger than IDT for the pieces located 

in the high correlation zone. The length of this zone Lhc depends on the autocorrelation parameter b and could be 

estimated from Eq. (1) by considering a low value of autocorrelation. For example, for b=1m Lhc ≈ –b ln(0.01) ≈ 

4.6m. However, if �� 9 :;< for the pieces located in this high correlation zone, the total number of sensors, Ns, 

should be increased until ensuring this condition for a given number of pieces. 

3.3 Parameter estimation, sensitivity analysis and optimization  

Stationary stochastic fields are simulated by the Karhunen-Loève expansion assuming an exponential ACF (Eq. 

(1)), whose parameter b has to be identified by knowing the two first statistic moments (μZ, σZ). Based on a 

continuous trajectory, for fixed values of Ns and np, we obtain a sample of discrete realizations from the sensor 

measurements => = ?@�, @�, … , @ABC	corresponding to the sensors positions D	 = ?��, ��, … , �ABC following the 

discretization procedure presented in previous section.  We assess the value of b by using the Maximum 

Likelihood Estimate method (MLE), reported by Li (2004). To account for the effect of random shape of 

trajectories, the analysis is carried out over a database containing 10,000 trajectories generated by Monte-Carlo 

simulations. This allows estimating 10,000 values	�E for each distribution of the sensor – i.e. one set of the couple 

(Ns, np). We select in this paper a confidence interval of the mean FE  expressed as a percentage Δ of the 

theoretical (true) value b
th

 to evaluate the quality of the SHM. From the 10,000 Monte-Carlo simulations we 

estimate the bounds of the confidence interval and the probability GH, to get values inside the confidence 

interval, from the monitoring data. In a reliability study, GH,	will be discussed according to the requirements on 

the accuracy of the probability of failure assessment [Stewart, 2006]. Thus we focus on the quality estimator: 
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GH, = G�FE ∈ ��1 − Δ��IJ, �1 - Δ��IJ�� (5) 

where FE  is the mean value of �E computed from 10,000 Monte-Carlo simulations. We define another estimate εb, 

the normalized quadratic error of the parameter �E:  

 

K = 7�E − �IJ�IJ 8� (6) 

Finally, the optimal position and number  LMLI of sensors is obtained by:  

 LMLI = NOPmax12 ?GH,�#+�C (7) 

4 Numerical simulations and real study case  

4.1 Application to a numerical study case 

For illustrating the methodology and generalization purposes, it is considered in the following sections a set of 

1D-components (beams) with a very large total length L>>b. The case of components with a limited size is 

discussed in (Schoefs et al., under review) excepting those where L < Lb for which it is theoretically impossible 

to identify fully the stochastic field. The Gaussian stationary stochastic field is characterized by: bth=1m, 

IDT=0.91m from Eq. (2), µZ = 100 and σZ = 20. The objective is to optimize the position of sensors in view to 

reach a good assessment of b for an error Δ = 10%.	 We first analyze the effect of the number of pieces (np) on 

the quality of assessment defined according to Eq. (5) for a large number of sensors Ns and large length L; 

namely Ns=200 and L=100m.  We vary the number of pieces from 1 (200 sensors equally separated by the 

distance Lb = IDT) to 20 (72, 36, 18, 12, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, and 2). 

Figure 1a presents the evolution of the quality estimator (GH,) with np for 10,000 simulated trajectories.  

 

Fig. 1. Effect of number of pieces np on: 

a - the probability of interval PI,b; b - the estimated values of b 

c - the distribution of εb; d - the mean and standard deviation of εb (Ns=200, L=100m and ∆=10%) 
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The regular spacing obtained for np=1 is shown to be not optimal whereas the optimum is found for np=2 with 

133 sensors spaced 37.8 cm in the first piece of 50m and 67 sensors with spacing equal to 74.6cm in the second 

piece. Figure 1 presents other results to improve the understanding of the causes of this trend. Figure 1b plots the 

evolution with np of the two first statistics (mean and standard deviation) and the minimum and maximum values 

obtained for b from a sample of size 10,000. It is observed that the mean value decreases slightly with np and 

becomes stable with a significant bias in comparison to the reference theoretical value (1m). This means that 

identification algorithm underestimates the value of b. Thus, even if the standard deviation decreases with np, GH, is not optimal for high values of np. Note that the maximum and minimum bounds are not symmetrical to the 

mean; that is due to the non-symmetrical distribution of b for a fixed sensor distribution. Figure 1c presents the 

potential relative error εb that can reach 4.8 (near 500%) for one realization upon 10,000. The results on Figure 

1d show the mean and standard deviation of εb and confirm that the error on the mean governs the level of the 

quality estimator GH, where the minimum value of the mean error is obtained for np=2. Figure 1d  also indicates 

that there is a significant reduction of the standard deviation of the error from np=1 to 2.  

We focus now on the effect of small perturbations around the value of b on the optimal solution. This is a key 

issue for studying the robustness of the solution obtained from an a priori value of b. This sensitivity analysis 

studies the effect of b on the error εb by assuming that b takes the following values around the reference one (i.e., 

b=1m): 0.8, 0.9, 1, 1.1, and 1.2 m (Figure 2).  

 

Fig. 2. Sensitivity of εb for: 

a - the mean of εb; b - the standard deviation of εb 

c - the mean and standard deviation of εb for np=2 (Ns=200, L=100m)  

Figure 2a plots the mean of the error εb for various values of np and b. It is found that the minimum error 

corresponds to np = 2 for all values of b. Figure 2b shows that the standard deviation of the error is sensitive to b 

for np = 2 and that leads to a given value for np > 5. Figure 2c presents the mean and standard deviation of the 

error for np = 2. It is noted that the error on the mean is almost constant with a minimum for b=1m but the error 

on the standard deviation increases with b. It is possible to conclude from this trend that under-estimating 

slightly the value of b reduces the error. 

The cases of small structures or small number of sensors are available in Schoefs et al. (under review). 

4.2 Illustration for a real study case  

The authors applied the proposed methodology and previous findings to two study cases for which real spatially 

distributed data are available (Schoefs et al., under review). We consider in this paper only one of them, the 
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inspection of the water content along a 16m length reinforced concrete beam placed on the site of IFSTTAR 

Laboratory, Nantes, France [Schoefs et al., 2016]. The measurements were carried out by using a capacitive 

NDT tool.  

Figure 3a presents the spatial measurements (trajectory) of the water content (RC beam). Mean and standard 

deviation are: μW = 6.3%, σW = 0.67% for the RC beam (computed from a sample of 80 measures every 20 cm). 

  

Fig. 3. a- Experimental trajectories of water content; b- auto-correlation data and fitted ACFs for water content in a RC 

beam (IFSTTAR, Nantes, France) 

Figure 3b presents the computed autocorrelation values. We obtain a classical shape including negative values 

[henari & Dodaran, 2010]. Applying the procedure described previously it was found that the exponential 

correlation functions are appropriate to model the empirical values. The following parameter of the 

autocorrelation function (Eq. (1)) were estimated: bW = 0.42m assumed in the following results and discussions 

as the theoretical value. Based on the fitted auto-correlation functions, the Inspection Distance Thresholds (IDT) 

is: IDTW = 0.5m. Taking into account the length of the structural components and the findings of Schoefs et al. 

(under review), we propose a regular spacing of measurements for the RC beam because the ratio IDTW/L = 

0.4/16 > 1/40. In the following we compare real and numerical estimations to determine the appropriateness of 

the proposed sensor spacing in each case. 

We estimate the errors on the identification of εb for both real data and simulations for the two study cases. 

Numerical simulations are based on: (i) the procedures to generate trajectories, and (ii) the values of mean, 

standard deviation and autocorrelation parameter identified upon. The main goal of this section is to validate the 

proposed numerical approach as well as to verify if the practical recommendations of the previous numerical 

findings could be applied to real measures. 

Figure 4a compares the evolution of the error of the assessment of b by considering various np for results 

obtained from simulations and those computed from real data measured on the RC beam. The numerical mean as 

well as the minimum and maximum values were computed from 10,000 simulations.  

 

Fig. 4. Comparison between simulated results and real inspection values in the case of water content (RC beam, L =16 

m, IDT=0.4m): 

a - effect of np on εb, for Ns=40 sensors; b - effect of Ns on the mean of εb 

The results show that the numerical and mean values are close and that εb is minimum for np = 1. This behavior 

confirms the recommendation based on the numerical findings for the case of L < 40IDT where the regular 

spacing is suggested in such a case. Figure 4b compares the evolution of the mean of εb with Ns for np=1 and 

np=2. It is observed that the mean of εb decreases when more information from additional sensors is considered. 
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There is a convergence in the error that is faster when np=1; in such a case it is reached for Ns > 30 sensors.  The 

results also show that a regular spacing with np=1 leads to lower error for both simulated and real data.  

5 Conclusion 

This paper proposed an original method for defining a non-regular spacing of sensors devoted to the assessment 

of the autocorrelation function parameter of stationary fields. The method is based on the probabilistic 

identification of the autocorrelation function parameter and aims at reducing the error on its estimation. 

Numerical simulations of Gaussian stationary stochastic fields illustrate the potential of the method by providing 

a decision aid tool when a limited number of sensors is available. Based on these numerical results, it was found 

that the position of sensors is a key factor for estimating the autocorrelation function parameter.  

The paper shows also the important role of the position of sensors in the estimation of the autocorrelation 

function parameter on a real study case (concrete beam). 
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