Elastični projektni spektar

- projektni spektar: sadrži procjenu djelovanja budućih potresa
- nije dovoljan spektar jednog, prošlog zapisa
- razlog: ista lokacija izrazite razlike u obliku zapisa i spektra
- budući ekstremi: mogu se pojaviti između postojećih

- zamisao: stvoriti spektar koji zamjenjuje više potresa
- nazubljenost aproksimirati DOVOLJNO VISOKIM pravcima
- problem: nema dovoljno zapisa s područja
- zapisi sa sličnog područja: postoje 176 podudarna svojstva
- ako nema: PRILAGODBA zapisa s područja drugačijih svojstava
- projektni spektar: statistička obrada više spektralnih krivulja
- grupa zapisa: $\ddot{u}^i_g(t)$, $i=1,\ldots,I$, normirani na \ddot{u}_{g0} područja (ili 1g)
- odredimo spektre (ZA JEDAN ζ): svakom T_n pripadaju nizovi D^i , V^i i A^i
- nizovi D^i i V^i normirani na srednje vrijednosti $u^i_{
 m g0}$, $\dot{u}^i_{
 m g0}$ svih zapisa
- niz A^i normiran na \ddot{u}_{g0} (područja ili 1g)
- ullet statistička obrada I podataka niza $V^i/\dot{u}_{
 m g0}$ za svaki T_n
- ullet normalna razdioba 1 za $V_i/\dot{u}_{
 m g0}$: srednja vrijednost, standardna devijacija
- spojimo srednje vrijednosti: spektar odziva srednje vrijednosti
- slično: spektar srednje vrijednosti plus jedne standardne devijacije

¹http://en.wikipedia.org/wiki/Normal_distribution

- koeficijent varijacije (st. dev./sr. vr.): mijenja se ovisno o T_n
- primijetimo: spektri glađi od standardnih, za jedan zapis
- dobra aproksimacija pravcima: odmah određeni α_A , α_V i α_D
- seizmolozi: vrijednosti T_a , T_b , T_e i T_f slične za SVA čvrsta tla,

Odabrani periodi [s]				
Ta	T _b	T _e	T _f	
1/33	1/8	10	33	

- koeficijenti uvećanja α_{A} , α_{V} i α_{D} za tri srednja područja
- obrada velikog broja spektara (1) za stjenovita i sedimentna tla
- ako nije log mjerilo: lognormalna razdioba 2 za $lpha_V$ (za I spektara)
- α_A i α_D određeni za potkoračenje (fraktilu) α_V od 50% i 84,1%
- $\bullet\,$ vjerojatnosti potkoračenja potresa za medijan i medijan $+1\sigma^{\,3}$

²http://en.wikipedia.org/wiki/Log-normal_distribution ³http://www.grad.hr/nastava/vis/Skripta/stat1pred.pdf

Drigučania	Medijan			$Medijan + 1\sigma$		
r ngusenje ز [%]	Potkoračenje: 50%			Potkoračenje: 84,1%		
ς [/σ]	$\alpha_{\mathcal{A}}$	α_V	α_D	$\alpha_{\mathcal{A}}$	α_V	α_D
1	3,21	2,31	1,82	4,38	3,38	2,73
2	2,74	2,03	1,63	3,66	2,92	2,42
5	2,12	1,65	1,39	2,71	2,30	2,01
10	1,64	1,37	1,20	1,99	1,84	1,69
20	1,17	1,08	1,01	1,26	1,37	1,38

$$f\left(V/\dot{u}_{g0}\right)$$
 lognormalna
razdioba za
odabrani T_n
medijan + 1 σ V/\dot{u}_{g0}

- koeficijenti α_A, α_V i α_D: uvećavaju ü_{g0}, ú_{g0}, u_{g0} (str. 199.)
- uvećanje ovisi o:
 vjerojatnosti potkoračenja (fraktili)
 i prigušenju (nizu / pripada jedan ζ)

• sjecišta
$$A = \alpha_A \ddot{u}_{g0}$$
, $V = \alpha_V \dot{u}_{g0}$ i $D = \alpha_D u_{g0}$: T_c i T_d

Postupak tvorbe projektnog spektra prema slici:

- **1** povući vertikalne pravce s periodima T_a , T_b , T_e i T_f .
- 2 ucrtati pravce vršnih vijednosti potresa: \ddot{u}_{g0} , \dot{u}_{g0} , u_{g0}
- Sodrediti α_A , α_V i α_D za planiranu fraktilu i ζ (str. 201.)
- **③** pomnožiti $\alpha_A \ddot{u}_{\mathrm{g0}}$: ucrtati polupravac iz *b* paralelan s \ddot{u}_{g0}
- **§** pomnožiti $\alpha_V \dot{u}_{\mathrm{g0}}$: ucrtati pravac paralelan s \dot{u}_{g0}
- **6** pomnožiti $\alpha_D u_{g0}$: ucrtati polupravac iz *e* paralelan s u_{g0}
- 🗿 označiti c i d: sjecišta pravaca određenih koracima 3 do 5
- ${f 0}$ ucrtati $A=\ddot{u}_{
 m g0}$ za $T_n < T_a$ i $D=u_{
 m g0}$ za $T_n > T_f$ (str. 186.)
- opvući dužine prijelaznog područja ab i ef

Primjer: projektni spektar za fraktilu 84,1%, $\zeta=5\%$ i $\ddot{u}_{
m g0}=1g$

- ullet množenjem spektra s η dobivamo spektar za $\eta\ddot{u}_{
 m g0}$
- ullet vrijednosti $\dot{u}_{
 m g0}$ i $u_{
 m g0}$ odredili seizmolozi za čvrsta tla

• Preporuka:
$$\dot{u}_{
m g0}/\ddot{u}_{
m g0}=1,22\,[m/s/g]$$
 i $\ddot{u}_{
m g0}u_{
m g0}/\dot{u}_{
m g0}^2=6$

- za $\ddot{u}_{\mathrm{g0}} = 1g$ dobivamo: $\dot{u}_{\mathrm{g0}} = 1,22\,\mathrm{m/s}$ i $u_{\mathrm{g0}} = 0,91\,\mathrm{m}$
- **0** pravci vršnih vrijednosti: $\ddot{u}_{\mathrm{g0}} = 1g$, $\dot{u}_{\mathrm{g0}} = 1,22\,\mathrm{m/s}$, $u_{\mathrm{g0}} = 0,91\,\mathrm{m}$
- 3 za fraktilu 84,1% i $\zeta=$ 5%: $lpha_{A}=$ 2,71, $lpha_{V}=$ 2,30, $lpha_{D}=$ 2,01
- **3** polupravac iz b: $A = \text{const.: } 1 \text{ g} \cdot 2,71 = 2,71 \text{ g}$
- pravac $V = \text{const.: } 1,22 \cdot 2,30 = 2,81 \,\text{m/s}$
- **5** polupravac iz e: $D = \text{const.:} 0,91 \cdot 2,01 = 1,83 \text{ m}$
- **o** sjecišta *c* i *d*: određuju periode T_c i T_d
- 🔮 označiti $A=1\,{
 m g}\,$ za $T_a<1/33\,{
 m s}\,$ i $D=0,91\,{
 m m}\,$ za $T_f>33\,{
 m s}\,$
- **3** spojiti $(1/33 \, s, 1 \, g)$, $(1/8 \, s, 2, 71 \, g)$ i $(10 \, s, 1, 83 \, m)$, $(33 \, s, 0, 91 \, m)$

- iz tripartitnog spektra odredimo spektar pseudoubrzanja i pomaka
- način: očitamo koordinate (T_n, A) i (T_n, D) svih sjecišta (a do f)
- točke od a do f spojimo pravcima (str. 207. i 208.)
- neprecizno: bolje iz $174 \cdot formula$ za točne vrijednosti, npr. za T_n i A

• slika:
$$T_n = 1/8$$
, $A = 2,71$ g: $D = A/(2\pi/T_n)^2$ i $V = A/(2\pi/T_n)$

- slično T_c i T_d : $T_c = 2\pi V/A = 0,66 \,\mathrm{s}$ i $T_d = 2\pi D/V = 4,12 \,\mathrm{s}$
- očitavanje za T_n između čvornih vrijednosti: također nije precizno
- pravci u log mjerilu, funkcije potencije u linearnom mjerilu (str. 211.)
- znamo čvorne točke: sustav 2 × 2, odredimo *a* i *b*, pa i $A = bT_n^a$
- formule na str. 207; slično $D = dT_n^c$ (nisu priložene na str. 208.)
- novi ζ : isti postupak, samo drugi α_A , α_V i α_D (str. 201.)

- projektni spektri: $\ddot{u}_{g0} = 1 \, \text{g}$, fraktila 84,1% i čvrsta tla (klasa A)
- uporaba: proračun projektnih sila i pomaka ELASTIČNOG SUSTAVA
- priloženi oblici spektara uvriježeni u svim propisima
- množe se koeficijentom η : vršnim ubrzanjem tla (NAD)⁴

Usporedba propisanog i stvarnog spektra

Za lokaciju: čvrsto tlo i $\ddot{u}_{\rm g0}=$ 0,319 ${\rm g}~(\eta=$ 0,319)

- propisani: $\ddot{u}_{
 m g0} = 0,319\,{
 m g}$, 204 < preporuka: $\dot{u}_{
 m g0} = 0,39\,{
 m m/s}$, $u_{
 m g0} = 0,29\,{
 m m}$
- stvarni (str. 161.): $\ddot{u}_{
 m g0} = 0,319\,{
 m g}$, $\dot{u}_{
 m g0} = 0,33\,{
 m m/s}$, $u_{
 m g0} = 0,21\,{
 m m}$
- isti \ddot{u}_{g0} : dobro podudaranje u području osjetljivom na ubrzanje
- $\bullet\,$ različiti \dot{u}_{g0} i u_{g0} : razlike u području osjetljivom na brzinu i pomak
- odstupanja među spektrima čak i uz iste vršne vrijednosti
- i propisani: $\ddot{u}_{\mathrm{g0}}=0,319\,\mathrm{g}$, $\dot{u}_{\mathrm{g0}}=0,33\,\mathrm{m/s}$, $u_{\mathrm{g0}}=0,21\,\mathrm{m}$ (El Centro)
- fraktila 50% prenisko, fraktila 84,1% dobra procjena

⁴izvor: http://seizkarta.gfz.hr/karta.php

4.

Razlozi odstupanja:

- projektni spektar (glatki) nije spektar jednog zapisa (nazubljen)
- dobiven statističkom obradom više spektara: postoji rasipanje

Razlike između projektnog i stvarnog spektra

- spektar odziva: VRŠNI iznosi za ODABRANI potresni zapis
- projektni spektar: PROPISANI iznosi vršnih vrijednosti
- ovisno o tvorbi: može biti vrlo različit od spektra odziva
- slični ako je projektni dobiven statistički iz spektara odziva
- za neke lokacije: projektni spektar ovojnica dvaju spektara
- razlog: dva rasjeda utječu na širenje potresa
- primjer: srednje jaki bliski i jaki udaljeni potresi
- svakoj grupi pripada različiti projektni spektar
- zbirno djelovanje: ovojnica spektara
- bliski potresi utječu na kratke, a udaljeni na duge periode

Spektri brzine i ubrzanja

- pseudovrijednosti V i A: tangencijalna brzina i radijalno ubrzanje
- amplitude jednostavnog harmonijskog titranja najvećim pomakom
- vršni odzivi: dovoljan spektar $u_0(T_n) = D(T_n)$, [ili $V(T_n)$, ili $A(T_n)$]
- spektri vrijednosti $\dot{u}_0(T_n)$ i $\ddot{u}_0^t(T_n)$ nisu potrebni
- odredimo ih radi razlikovanja prema pseudovrijednostima V i A

• 144 • Duhamleov integral za
$$p(au) = p_{ ext{eff}}(au) = -m\ddot{u}_g(au)$$
, (m se krati):

$$u(t) = -\frac{1}{\omega_D} \int_0^t \ddot{u}_g(\tau) e^{-\zeta \omega_n(t-\tau)} \sin \left[\omega_D(t-\tau) \right] d\tau$$

• brzina (d/dt umnoška pod integralom, $\ddot{u}_g(\tau)$ ne ovisi o t):

$$\dot{u}(t) = -\zeta \omega_n \underbrace{\left(-\frac{1}{\omega_D}\right) \int_0^t \ddot{u}_g(\tau) e^{-\zeta \omega_n(t-\tau)} \sin\left[\omega_D(t-\tau)\right] d\tau}_{u(t)}$$

$$-\frac{1}{\omega_D}\omega_D\int_0^t \ddot{u}_g(\tau)e^{-\zeta\omega_n(t-\tau)}\cos\left[\omega_D(t-\tau)\right]d\tau$$
$$\dot{u}(t) = -\zeta\omega_n u(t) - \int_0^t \ddot{u}_g(\tau)e^{-\zeta\omega_n(t-\tau)}\cos\left[\omega_D(t-\tau)\right]d\tau$$

- ukupno ubrzanje $\ddot{u}^t(t)$: deriviranjem $\dot{u}(t)$ i pribrajanjem $\ddot{u}_g(t)$
- lakše pomoću jednadžbe gibanja $\left[\text{uz } \ddot{u}^t(t) = \ddot{u}(t) + \ddot{u}_g(t) \right]$:

$$\ddot{u}(t) + 2\zeta\omega_n\dot{u}(t) + \omega_n^2u(t) = -\ddot{u}_g(t), \quad \ddot{u}^t(t) = -\omega_n^2\underline{u(t)} - 2\zeta\omega_n\underline{\dot{u}(t)}$$

- spektri: vršne vrijednosti \dot{u}_0 i \ddot{u}_0^t pri pobudi $\ddot{u}_g(t)$ u funkciji T_n
- ordinate linearne (ne log): lakše uočavanje razlika (str. 221. i 223.)

Usporedba spektara pseudobrzine i relativne brzine

- odstupanja ovise o periodu *T_n* (str. 221.)
- dugi periodi: $V \ll \dot{u}_0$, jer $\dot{u}_0
 ightarrow \dot{u}_{
 m g0}$ i V
 ightarrow 0
- dokažimo: masa stoji, tlo se giba pa je $u^t
 ightarrow 0$ i $\dot{u}^t
 ightarrow 0$

• zbog
$$\dot{u}^t = \dot{u}_g + \dot{u} \Rightarrow \dot{u} \rightarrow -\dot{u}_g \Rightarrow \dot{u}_0 \rightarrow \dot{u}_{g0}$$

• • Loog
$$u^t = u_g + u \Rightarrow u \rightarrow -u_g \Rightarrow u_0 \rightarrow u_{g0}$$
 ili $D \rightarrow u_{g0}$

• ako
$$T_n \to \infty$$
: $V = 2\pi/T_n D \to 2\pi/T_n u_{g0} \to 0$

- za kratke T_n , V iznad \dot{u}_0 , za srednje i duge T_n , ispod \dot{u}_0
- promotrimo omjer spektara V/\dot{u}_0 za razne ζ (str. 221.)
- razlika među spektrima: odstupanje omjera prema jedinici
- razlika najmanja za $\zeta = 0$, raste s porastom ζ
- pojašnjenje: za $\zeta=0$ $(\omega_D=\omega_n$ i $e^{-\zeta\omega_n(t- au)}=1)$ imamo

$$\omega_n u(t) = -\int_0^t \ddot{u}_g(\tau) \sin \left[\omega_n(t-\tau)\right] d\tau \qquad \text{(str. 218.)}$$
$$\dot{u}(t) = -\int_0^t \ddot{u}_g(\tau) \cos \left[\omega_n(t-\tau)\right] d\tau \qquad \text{(str. 219.)}$$

• razlika $\omega_n u(t)$ i $\dot{u}(t)$ samo za član sin i cos: amplitude iste

• dakle: $\omega_n u_0 = \dot{u}_0$, uz $D = u_0$ i $V = \omega_n D \Rightarrow V = \dot{u}_0$

- za male vrijednosti
 V i u
 ₀, primjerice:
 - $V=0,04\,\mathrm{cm/s}$
 - $\dot{u}_0=0,01\,{\rm cm/s}$
 - (jer V pada sporije)
- i uobičajenih $\dot{u}_{g0} = 40 \, \mathrm{cm/s}$
- omjeri su bliski nuli:
 - $V/\dot{u}_{g0} = 10^{-3}$ $\dot{u}_0/\dot{u}_{g0} = 2,5 \cdot 10^{-4}$
- ali omjer malih

vrijednosti:

$$\frac{V}{\dot{u}_0} = \frac{0,04}{0,01} = 4$$

• za
$$\zeta > 0$$
: $-\zeta \omega_n u(t) \neq 0$, razlika $\omega_D u(t) = V(t)$ i $\dot{u}(t)$

- veća odstupanja među amplitudama V i \dot{u}_0 (str. 221.)
- uobičajeni ζ : mala odstupanja za kratke i srednje periode

Usporedba spektara pseudoubrzanja i ukupnog ubrzanja

• 219 (isti) za
$$\zeta = 0$$
: $\ddot{u}^t(t) = -\omega_n^2 u(t)$ jer je $-2\zeta \omega_n \dot{u}(t) = 0$

- iste funkcije i amplitude: $\ddot{u}_0^t = \omega_n^2 u_0 = \omega_n^2 D = A$ (str. 223.)
- za $\zeta > 0$: $\ddot{u}^t(t) = -\omega_n^2 u(t)$ samo za t_a kada je $\dot{u}(t_a) = 0$
- tada je $u(t_a) = u_0$ (lokalni ekstrem), pa: $-\omega_n^2 u_0 = \ddot{u}^t(t_a)$
- amplituda \ddot{u}_0^t funkcije $\ddot{u}^t(t)$ nije u t_a (samo za $\zeta = 0$)
- nema podudaranja A i \ddot{u}_0^t : veći ζ , raste $-2\zeta \omega_n \dot{u}(t)$ i odstupanje
- 1862 kratki periodi: $A \to \ddot{u}_0^t$, dugi periodi: $A \ll \ddot{u}_0^t$ (str. 223.)
- ullet dokažimo: masa stoji, tlo se giba pa je $u^t
 ightarrow 0\,$ i $\,\ddot{u}^t
 ightarrow 0\,$

• tada $\ddot{u}_0^t
ightarrow 0$, 220 < od ranije: $D
ightarrow u_{
m g0}$

• ako $T_n \rightarrow \infty$: $A = (2\pi/T_n)^2 D \rightarrow (2\pi/T_n)^2 u_{\mathrm{g0}} \rightarrow 0$

•
$$\ddot{u}_0^t \rightarrow 0 \text{ i } A \rightarrow 0$$

- A pada brže: sa T_n^2
- $mA = f_{S0}$, ali $m\ddot{u}_0^t = (f_S + f_D)_0$
- mora biti: $A < \ddot{u}_0^t$
- A dio \ddot{u}_0^t , daje $f_{\rm S0}$
- zato $A/\ddot{u}_0^t < 1$
- pseudo (lažno)
- neprikladan naziv
- bolje: aproksimacije točnih spektara
- daju potrebno:
 - $f_{
 m S0}$ i $E_{
 m S0}$

- propisi: poprečna reakcija manja od elastične
- posljedica: naprezanje iznad granice elastičnosti
- elastične računske sile (str. 172.): $f_{\rm S0} = A/g w$, odziv bez pukotina
- nije ekonomično za jake potrese: veliki utrošak materijala
- ako su pukotine opasne: spremnici, brane, temelji i stolovi turbina
- nužno elastično ponašanje: velike sile pomoć prigušivača

- uobičajeno: prihvaćanje RAZUMNE razine oštećenja
- posljedica: ulazak u plastično područje radnog dijagrama
- elastoplastični dijagrami: pokusi (ovise o materijalu i sustavu)

- posljedica: za $u > u_y$ svjesno dimenzioniranje na manje sile $(f_y \text{ ne } f_0)$
- težak zadatak: PROGNOZA prihvatljivog oštećenja zbog tečenja
- važna svojstva: višestruka statička neodređenost i duktilnost⁵
- koeficijent duktilnosti: $\mu = u_m/u_y \geq 1$ zahtjev na konstrukciju

⁵žilavost, rastezljivost

• primjera loše prognoze ima mnogo:

- neboder O'HIGGIN, CONCEPCION, Čile, 21 kat, ab, izveden 2009. god.
- bočna krutost: zidovi i okviri, NESIMETRIČAN u tlocrtu i po visini
- teško oštećen u potresu 2010. (slom 12. kata): zgrada uklonjena

• ili primjerice:

- psihijatrijska dnevna bolnica, SAN FERNANDO, Kalifornija, 2 kata, ab
- bočna krutost: okviri sa zidanom ispunom na drugom katu
- ispuna prouzročila porast krutosti i čvrstoće drugog kata
- pojava modela slabog kata (engl. WEAK STORY MODEL)
- srušena u potresu 1971. (slom prizemlja): uklonjena
- drugi kat ostao gotovo neoštećen

а	<i>u</i> = 0	$f_S = 0$
b	$u = u_y$	$f_S = f_y$
b-c	$u > u_y$	$f_S = f_y = \text{const.}$
с	$u = u_m$	$f_S = f_y$
c-d	<i>u</i> < <i>u</i> _m	$f_{S} < f_{y}$
d	-	$f_S = 0$
d-e	-	$f_S < 0$
е	-	$f_S = -f_y$
e-f	-	$f_{\mathcal{S}} = -f_{\mathcal{Y}} = \text{const.}$
f	$u = -u_m$	$f_S = -f_y$
f-g	$u > -u_m$	$f_S > -f_y$
g	_	$f_S = 0$
g-	_	$f_S > 0$

elastično do b početak tečenja tečenje, plastična grana $f_S - u$ dija. lokalni maks. ($\dot{u} = 0$), točka vraćanja elastično rasterećenje, bez tečenja sustav rasterećen unutarnja sila u suprotnom smjeru početak tečenja tečenje, plastična grana $f_{\rm S} - u$ dija. lokalni min. ($\dot{u} = 0$), točka vraćanja elastično rasterećenje, bez tečenja sustav rasterećen elastično do $f_S = f_V$

- sustav ne titra oko početnog (uspravnog) položaja ravnoteže
- manji \overline{f}_y (veći R_y): više ciklusa tečenja
- nakon jednog ciklusa: titranje oko otklonjenog položaja
- posljedica: prolaskom pobude sustav ostaje otklonjen (trajne def.)
- linearni model: povratak u početni položaj
- različito t nastupa i iznos ekstrema ($u_0 = 8, 5 \,\mathrm{cm}, u_m = 4, 3 \,\mathrm{cm}$)
- koeficijent duktilnosti (uz $u_y = \overline{f}_y u_0 = u_0/R_y$, str. 225.):

$$\mu = \frac{u_m}{u_y} = \frac{1}{\overline{f}_y} \frac{u_m}{u_0} = R_y \frac{u_m}{u_0} = 8 \frac{4,3}{8,5} = 4,05$$

• potrebna⁶ duktilnost: duktilni odziv za pomak 4 puta veći od u_y !

- ako je manja: krhki lom za danu pobudu (opasno, teška sanacija)
- pazite na izbor statičkog sistema, materijala i detalja konstrukcije
- • μ biramo unaprijed: veća vrijednost (i zahtjev!), manje sile potresa

⁶zahtijevana

prirodni period titraja T_n (log mjerilo)

4.
Odziv elastoplastičnog sustava na pobudu potresom

Odziv elastoplastičnog sustava na pobudu potresom

- poopćeni sustav: složeni sustav aproksimiran jednim st. sl.
- postoji više pristupa, bit: pretpostaviti oblik titranja

Rayleighijev postupak (kvocijent)

- 1873. lord Rayleigh: temeljeno na zakonu o očuvanju energije
- jednostavnog harmonijskog gibanja s jednim stupnjem sl.
- pobuda: u(0) i u(0)
- zbog jednostavnosti: početak gibanja u t' = 0 (isto ∀t)

$$u(t') = u_0 \sin \omega_n t'$$
$$\dot{u}(t') = \underbrace{u_0 \, \omega_n}_{\dot{u}_0} \cos \omega_n t'$$

- potencijalna energija: $E_S = 1/2 k u^2$, ekstrem: $E_{\rm S0} = 1/2 k u_0^2$
- vrijeme ekstrema $u(t') = u_0$: $t' = T_n/4$, $3T_n/4$, $5T_n/4$, ...
- istodobno: $\dot{u}(t') = 0 \Rightarrow E_{\mathcal{K}} = 1/2m\dot{u}^2 = 0$
- tada je ukupna (772 energija:) $E_I = E_S + E_K = E_{
 m S0}$ (jer je $\zeta = 0$)
- ekstrem kinetičke energije: $E_{
 m K0}=1/2\,m\dot{u}_0^2$
- vrijeme ekstrema $\dot{u}(t') = \dot{u}_0$: t' = 0, $T_n/2$, T_n, \ldots
- istodobno: $u(t') = 0 \Rightarrow E_S = 1/2 ku^2 = 0$
- tada je ukupna energija: $E_I = E_S + E_K = E_{\rm K0}$ (jer je $\zeta = 0$)
- znači, za ekstremne vrijednosti u_0 i \dot{u}_0 : $E_I = E_{\rm S0} = E_{\rm K0}$
- odnosno: $1/2 k u_0^2 = 1/2 m \dot{u}_0^2$ i konačno,

$$ku_0^2 = m \underbrace{u_0^2 \omega_n^2}_{\dot{u}_0^2} \Rightarrow \omega_n = \sqrt{\frac{k}{m}}$$

• poznati izraz: nema prednosti za sustav s jednim st. sl.

- uloga: sustav s više st. sl. $\xrightarrow{\text{aproksimacija}}$ sustav s jednim st. sl.
- složeni sustav: moguće titranje različitim oblicima
- bit aproksimacije:
 - pretpostaviti jedan oblik titranja (progiba) $\psi(x)$ funkcija oblika
 - odabrati (značajni) pomak promjenjiv u vremenu z(t) poopćeni pomak
- posljedica: zahtijevamo titranje oblikom $u(x,t) = \psi(x) z(t) \sim \psi(x)$

- oblik titranja $\psi(x)$: određuje ponašanje u prostoru
- zakon titranja z(t): ponašanje u vremenu

Primjena na sustav s kontinuiranom masom

• 1• titranje) konzole: pretpostavka $u(x,t')=z(t)\psi(x)=z_0\sin\omega_nt'\psi(x)$

- oblik titranja $\psi(x)$, zakon titranja $z(t') = z_0 \sin \omega_n t'$, z_0 amplituda
- brzina titranja: $\dot{u}(x,t') = \omega_n z_0 \cos \omega_n t' \psi(x)$
- maksimalna $2 \cdot \text{potencijalna energija}^7$ konzole (za maks. pomak u_0):

$$E_{\rm S0} = \int_0^L \frac{1}{2} EI(x) \big[u_0''(x) \big]^2 dx, \quad u_0(x) = z_0 \psi(x), \quad (\sin \omega_n t' = 1)$$

• maksimalna $(\mathbf{x} \in \mathbf{x})$ konzole (za maks. brzinu $\dot{u}_0)$:

$$E_{\rm K0} = \int_0^L \frac{1}{2} m(x) \left[\dot{u}_0(x) \right]^2 dx, \quad \dot{u}_0(x) = \omega_n z_0 \psi(x) \quad (\cos \omega_n t' = 1)$$

⁷http://www.grad.unizg.hr/predmet/nmk/predavanja/; str. 44.

- uvrstimo: $[u_0''(x)]^2 = z_0^2 [\psi''(x)]^2$, $[\dot{u}_0(x)]^2 = \omega_n^2 z_0^2 [\psi(x)]^2$
- izjednačimo energije: $E_{
 m S0}=E_{
 m K0}$, (1/2 i z_0^2 iščezavaju)

$$\omega_n^2 = \frac{\int_0^L EI(x) \left[\psi''(x)\right]^2 dx}{\int_0^L m(x) \left[\psi(x)\right]^2 dx}, \qquad \text{Rayl}$$

Rayleighijev kvocijent

- vrijedi za bilo kakav kontinuirani statički sustav
- procjena prvog⁸ perioda titranja (u smjeru najmanje krutosti)
- pretpostavimo oblik titranja $\psi(x)$: EI i m poznato, odredimo ω (T_n)

⁸temeljnog, osnovnog, fundamentalnog (jer ih složeni sustav ima više)

Primjena na sustav s diskretnim masama

- model zgrade: apsolutno krute grede s koncentriranim masama
- titranje zgrade: vektor ${f u}(t')=z_0\sin\omega_nt'\psi$, funkcija oblika: vektor ψ
- $\boldsymbol{\psi} = \begin{bmatrix} \psi_1 & \dots & \psi_j & \dots & \psi_N \end{bmatrix}^{\mathrm{T}}$, komponente određuju položaje masa
- brzina titranja: vektor $\dot{f u}(t')=\omega_n z_0\cos\omega_n t'\psi$
- E_{S0} nastupa pri maks. pomacima: $\mathbf{u}_0 = \begin{bmatrix} u_{10} & \dots & u_{j0} & \dots & u_{N0} \end{bmatrix}^{\mathrm{T}}$

$$E_{
m S0} = \sum_{j=1}^{N} rac{1}{2} k_j (u_{j,0} - u_{j-1,0})^2, \quad u_{j0} - u_{j-1,0}, \;\; {
m maks.} \; {
m pomak} \; {
m etaže} \; j$$

• E_{K0} nastupa pri maks. brzinama: $\dot{\mathbf{u}}_0 = \begin{bmatrix} \dot{u}_{1,0} & \dots & \dot{u}_{j,0} & \dots & \dot{u}_{N,0} \end{bmatrix}^{\mathrm{T}}$

$$E_{
m K0} = \sum_{j=1}^{N} rac{1}{2} m_j \dot{u}_{j0}^2, \quad \dot{u}_{j0}^2, \quad
m maks. \ brzina \ (na \ mjestu!) \ mase \ j$$

• • ekstremi: $u_{j0} = z_0 \psi_j$, $(\sin \omega_n t' = 1)$, $\dot{u}_{j0} = \omega_n z_0 \psi_j$, $(\cos \omega_n t' = 1)$

Svojstva Rayleighijevog kvocijenta

- 1. svojstvo: približna frekvencija UVIJEK veća od točne
- izborom $\psi(x)$ uvodimo prisilu među pomake sustava
- prisiljavamo model na gibanje drugačijim oblikom od točnog
- sustav činimo krućim (k raste): veća frekvencija ($\omega_n = \sqrt{k/m}$)

- očekivano: sve procjene α_n veće od točne vrijednosti
- treći primjer ($\psi(x) = x^2/L^2$): izrazito loša procjena α_n
- razlog: ne vrijedi rubni uvjet po silama na vrhu $ig(M(\ell)=0ig)$
- moment konstantan duž konzole: $\psi''(x) = 2/L^2 = \text{const.}$
- pri izboru $\psi(\mathbf{x})$: zadovoljiti geometrijske i prirodne rubne uvjete
- 2. svojstvo: dobra aproksimacija i uz lošiji izbor funkcije oblika
- ullet pretpostavka: poznajemo točno rješenje ψ
- ullet odrediti vektor odstupanja (pogreške) $\Delta\psi$
- ullet ako je $\,\,\widetilde{\cdot}\,$ oznaka približnog rješenja: $\Delta\psi= ilde{\psi}-\psi$
- iznos odstupanja (duljina vektora pogreške): $\|\Delta\psi\| = \sqrt{\Delta\psi^{\mathrm{T}}\Delta\psi}$
- bez dokaza: pogreška R. kvocijenta: $(\tilde{\omega}_n^2 \omega_n^2)/\omega_n^2 \sim \|\Delta\psi\|^2$
- ako upotrijebimo točni ψ dobivamo točan iznos ω_n : $\Delta \psi = {f 0}$
- ullet problem: točni ψ nije poznat unaprijed rabimo približni, $ilde{\psi}$

Izbor funkcije oblika

- važno: točnost kvocijenta ovisi o izboru funkcije oblika $ilde{\psi}(x)$
- velika točnost: funkcija oblika približno (prvog) oblika titranja
- sila inercije pri titranju $(238_1 \cdot pomakom) u(x, t') \sim \psi(x)!$:

$$f_I(x,t') = -m(x) \ddot{u}(x,t') = \omega_n^2 z_0 m(x) \psi(x) \sin \omega_n t'$$

- razdioba sile $\sim m(x)\psi(x)! \left[\omega_n^2 z_0 = \text{const.}, \sin \omega_n t' \text{ je } f(t)\right]$
- funkcija oblika: progib ψ̃(x) zbog statičke sile p(x) = m(x)ψ̃(x)
 iteracija po ψ̃(x): ψ̃_i(x) = m(x)ψ̃_{i-1}(x)/k, nije u duhu R. kvocijenta

- težina u poprečnom smjeru: $p(x) = gm(x), \ ilde{\psi}(x) = g$, ili
- sile: $p(x) = \mathbf{p} = \begin{bmatrix} p_1 & \cdots & p_n \end{bmatrix}^{\mathrm{T}}$ (težine etaža, ali ne nužno)

- funkcije oblika zadovoljavaju rubne uvjete po silama i pomacima
- lakše odrediti potencijalnu energiju kao rad sila p(x) na u(x),

$$E_{\mathrm{S0}} = rac{1}{2} \int_0^L p(x) u(x) dx, \quad ext{nego iz} \quad ext{238}_2 ext{ -deformacija} \quad u_0''(x)$$

• uz
$$E_{\rm K0}$$
 kao ²³⁸ (ranije) i $\dot{u}_0(x) = \omega_n u_0(x)$, (str. 235.), dobivamo:

$$\omega_n^2 = \frac{\int_0^L p(x)u(x)dx}{\int_0^L m(x)[u(x)]^2 dx}$$

• neki propisi: procjena T_n za $p(x) = p_0$ (konstantno opterećenje)

• ako je p(x) = gm(x) tada je $\omega_n^2 = g \frac{\int_0^L m(x)u(x)dx}{\int_0^L m(x)[u(x)]^2 dx}$

• ako je
$$p(x) = \mathbf{p}$$
,
 $E_{S0} = \frac{1}{2} \sum p_j u(x_j), \quad \omega_n^2 = \frac{\sum p_j u(x_j)}{\int_0^L m(x) [u(x)]^2 dx}$

- funkciju oblika za I(x) zamijeniti funkcijom za I = const.
- ne tražite preciznu funkciju oblika i frekvenciju!
- zamisao Rayleighijevog kvocijenta: jednostavna i brza procjena
- $\tilde{\psi}(\mathbf{x})$: jednostavna funkcija koja zadovoljava sve rubne uvjete
- statički progib: vrijedi i za sustave s diskretnim masama $(\int
 ightarrow \sum)$

• potencijalna energija u slučaju opterećenja i progiba sa slike:

$$E_{\rm S0} = \frac{1}{2} p_N u_N$$
 $E_{\rm S0} = \frac{1}{2} \sum_{j=1}^N p_j u_j$ $E_{\rm S0} = \frac{1}{2} g \sum_{j=1}^N m_j u_j$

kinetička energija:

$$E_{\rm K0} = \sum_{j=1}^{N} \frac{1}{2} m_j \dot{u}_{j0}^2 = \sum_{j=1}^{N} \frac{1}{2} m_j (\omega_n u_{j0})^2, \qquad (240 \text{ J} \text{ pr je}) \ \dot{u}_{j0} = \omega_n \underbrace{z_0 \psi_j}{u_{j0}}$$

• izjednačenjem energija kao i ranije (izostavimo indeks od \sum i 0):

$$\omega_n^2 = \frac{p_N u_N}{\sum m_j u_j^2} \qquad \omega_n^2 = \frac{\sum p_j u_j}{\sum m_j u_j^2} \qquad \omega_n^2 = g \frac{\sum m_j u_j}{\sum m_j u_j^2}$$

• slično ²⁴¹ (zrazima)</sup> za posmičnu zgradu: ali brojnik oblika energije E_{S0} • a nazivnik za $\psi_j = u_j$: funkcija oblika je progibna linija

- prvi je izraz prevelika (ali ipak upotrebljiva) aproksimacija
- posljednja dva izraza: u propisima za procjenu ω_n
- izrazi vrijede za bilo kakvu građevinu (ne samo posmičnu zgradu)
- uspjeh aproksimacije: predočenje prvog oblika titranja
- lako za jednostavni sustav (prosta greda, posmična zgrada)
- razlog: sve ordinate prvog oblika istog predznaka
- složeni sustav: teško predočiti prvi oblik titranja
- statički progib od težine neprikladan: potiče drugi oblik titranja
- antimetrično zadana težina: dobra procjena prvog oblika

- horizontalni nosivi elementi: $\textit{EA}
 ightarrow \infty$, $\textit{EI}
 ightarrow \infty$
- vertikalni nosivi elementi: $\textit{EA}
 ightarrow \infty$, EI > 0
- zanemarujemo (44 (utjecaj) uzdužnih sila na krutost stupova
- pretpostavke posmične zgrade (str. 241.)
- masa: sudjelujuća masa koncentrirana u sredini grede
- viskozno prigušenje: proporcionalno relativnoj brzini greda
- bočna krutost etaže: zbroj krutosti stupova na savijanje
- ullet dinamički stupnjevi slobode: horizontalni pomaci (masa) u_1 i u_2 $_{\oplus 4}$

Jednadžba gibanja: 2. Newtonov zakon

- elastična sila f_{Sj} i viskozna sila f_{Dj} suprotne pobudi
- zakon $(\mathbf{1}, \mathbf{g})$ mase (promatramo sve sile koje djeluju na m_j):

$$p_j - f_{Sj} - f_{Dj} = m_j \ddot{u}_j$$
 ili $m_j \ddot{u}_j + f_{Dj} + f_{Sj} = p_j(t), j = 1, 2$

matrično:

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \ddot{u}_1 \\ \ddot{u}_2 \end{bmatrix} + \begin{bmatrix} f_{D1} \\ f_{D2} \end{bmatrix} + \begin{bmatrix} f_{S1} \\ f_{S2} \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$

$$\mathbf{m}\ddot{\mathbf{u}} + \mathbf{f}_D + \mathbf{f}_S = \mathbf{p}(t)$$

uz:

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \quad \mathbf{m} = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}, \quad \mathbf{f}_D = \begin{bmatrix} f_{D1} \\ f_{D2} \end{bmatrix}, \quad \mathbf{f}_S = \begin{bmatrix} f_{S1} \\ f_{S2} \end{bmatrix}, \quad \mathbf{p} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$

• matrica **m** – (**3** · matrica masa) (primijetite: dijagonalna)

Linearno elastične sile

• krutost (upeti krajevi), pomak i poprečna sila etaže iznose:

$$k_j = \sum_{\text{stupovi}} \frac{12EI}{h^3}, \qquad \Delta_j = u_j - u_{j-1}, \qquad V_j = k_j \Delta_j$$

• veza elastičnih sila i pomaka u razini greda:

$$f_{S1} = f_{S1}^{b} + f_{S1}^{a} = k_{1}\Delta_{1} + k_{2}(-\Delta_{2}) 2$$

$$\Delta_{1} = u_{1} - u_{0} = u_{1}, \quad (u_{0} = 0, \text{ ležaj})$$

$$f_{S1} = k_{1}u_{1} + k_{2}(u_{1} - u_{2})$$

$$f_{S2} = k_{2}\Delta_{2} = k_{2}(u_{2} - u_{1})$$

$$f_{S1}_{fS2} = \begin{bmatrix} k_{1} + k_{2} & -k_{2} \\ -k_{2} & k_{2} \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$

$$f_{S} = \mathbf{k}\mathbf{u}, \quad \mathbf{k} - \mathbf{matrice krutosti}$$

$$u_{1} = \sum_{i=1}^{u_{2}} \frac{u_{i}}{i_{i}} + \sum_{i=1}^{u_{2}} \frac{u_{i}}{i_{$$

Linearno viskozne sile

• uz koeficijent prigušenja c_j i brzinu \dot{u}_j , poprečne sile su:

$$V_j = c_j \dot{\Delta}_j, \qquad f_{D1} = c_1 \dot{u}_1 + c_2 (\dot{u}_1 - \dot{u}_2), \qquad f_{D2} = c_2 (\dot{u}_2 - \dot{u}_1)$$

• matrično (isti oblik kao elastične sile):

$$\begin{bmatrix} f_{D1} \\ f_{D2} \end{bmatrix} = \begin{bmatrix} c_1 + c_2 & -c_2 \\ -c_2 & c_2 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \end{bmatrix}, \quad \mathbf{f}_D = \mathbf{c}\dot{\mathbf{u}}, \quad \mathbf{c} - \checkmark \text{matrica prigušenja}$$

• uz $\mathbf{f}_{\mathcal{S}} = \mathbf{ku}$ 2522 • sustav postaje:

$$\mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = \mathbf{p}(t)$$

- matrična jednadžba: dvije obične diferencijalne jednadžbe
- svaka sadrži u₁ i u₂
- razlog: matrice c i k nisu dijagonalne
- jednadžbe međusobno ovisne: moraju se rješavati zajedno

D'Alambertov princip dinamičke ravnoteže

- sile inercije $f_{lj} = m_j \ddot{u}_j$ protivne \ddot{u}_j
- grede u statičkoj ravnoteži za svaki t

• iz
$$\sum x = 0$$
, jednadžbe ²⁵² 4 gibanja:

$$m_j \ddot{u}_j + f_{Dj} + f_{Sj} = p_j(t), \quad j = 1, 2$$

Ekvivalentni model

- dvije opterećene mase spojene oprugama i prigušivačima
- svojstva elemenata jednaka istoznačnim svojstvima okvira
- D'Alambertov pr. za svaku m_i i grupiramo po u̇_i i u_i (i = 1, 2):
 za m₁: m₁ü₁ + u̇₁(c₁ + c₂) c₂u̇₂ + u₁(k₁ + k₂) k₂u₂ = p₁(t)
 za m₂: m₂ü₂ + c₂u̇₂ c₂u̇₁ + k₂u₂ k₂u₁ = p₂(t)
- vrijedi isti matrični zapis (str. 254.): obje jednadžbe sadrže u_1 i u_2 Rastav na neovisne podmodele
- opterećenje $p_j(t)$ uzrokuje $u_j(t)$, $\dot{u}_j(t)$ i $\ddot{u}_j(t)$
- pomak djeluje samo na krutost k: nastaje elastična sila $f_{Sj} = k_j u_j(t)$
- brzina djeluje samo na prigušenje c: sila prigušenja $f_{Dj} = c_j \dot{u}_j(t)$
- ubrzanje djeluje samo na masu *m*: sila inercije $f_{lj} = m_j \ddot{u}_j(t)$
- sustav rastavimo na tri podmodela (EA uvijek ∞):
 - okvir bez mase i prigušenja (zadane krutosti na savijanje)
 - okvir bez krutosti i mase (gipki okvir, samo pridržanje prigušivača)
 - okvir bez krutosti i prigušenja (gipki okvir, samo pridržanje mase)

- svaki podmodel uzrokuje jednu vanjsku silu: \mathbf{f}_S , \mathbf{f}_D i $\mathbf{f}_I = \mathbf{m}\ddot{\mathbf{u}}$
- vrijedi ravnoteža s vanjskim opterećenjem: $\mathbf{m}\ddot{\mathbf{u}} + \mathbf{f}_D + \mathbf{f}_S = \mathbf{p}(t)$

Opći linearni sustav

- posmična zgrada: nije opći model (sadrži previše pretpostavaka)
- neizmjerne krutosti: u načelu nisu nužne, ali mogu biti opravdane
- opći model: treba odrediti diskretizaciju i stupnjeve slobode

- fizikalni problem, matematički model, DISKRETIZACIJA, numerički model
- nosive dijelove aproksimiramo štapnim i/ili plošnim elementima
- elementi spojeni u čvorovima modela
- stupnjevi slobode: translacije i rotacije čvorova
- okvir u ravnini: tri stupnja slobode; dvije translacije i rotacija
- prostorni model: šest stupnjeva slobode; tri translacije i tri rotacije

- dvoetažni, dvobrodni okvir, $6 \cdot 3 = 18$ stupnjeva slobode
- česta pretpostavka: grede i stupovi nisu rastezljivi
- razlog: $EA \gg EI$ (velika uzdužna prema bočnoj krutosti etaže)
- nepoznanice: pomaci etaža i zaokreti čvorova (inž. m. p.)
- dvoetažni, dvobrodni okvir: 8 stupnjeva slobode (str. 258.)
- opravdano za "široke" i niske zgrade (oznake na str. 258.):
- stupovi na velikom ℓ : mali ΔN (prirast N-a) od M prevrtanja
- niske grede (mali d/ℓ): ${\cal T}$ u gredi malo utječe na ΔN u stupovima
- 1. i 2. iznimka: bliski stupovi (uske zgrade) i/ili visoke grede
- mali ℓ za preuzimanje M prevrtanja i/ili veliki d/ℓ (veliki T)
- posljedice: značajan doprinos ΔN -a zbog M i/ili T
- 3. iznimka: visoke građevine veliki M prevrtanja, veliki ΔN
- 4. iznimka: veliki N od stalnog, pada k građevine, $P-\Delta$ učinak @

- dinamičko opterećenje: djeluje u smjeru stupnjeva slobode
- momenti se najčešće ne zadaju kao dinamička opterećenja

$$p_j(t), \qquad j = 1, \dots, 8$$

 $p_j(t) = 0, \quad j = 3, \dots, 8$

Analiza prvog podmodela: elastične sile

- vanjske sile *f_{Sj}* zbog *u_j*
- f_{s_2} posebno: za $u_j = 1$, ostali 0
 - štapovi se deformiraju
 - nastaju unutarnje sile M i T
 - u ravnoteži sa silama k_{ij}
 - *k_{ij}* drže progib od *u_j* = 1: postoje u svim čvorovima

- primjerice: sile k_{i1} , (i = 1, ..., 8), drže progib za $u_1 = 1$ (ostali 0)
- slično: sile k_{i4} , (i = 1, ..., 8), drže progib za $u_4 = 1$ (ostali 0)

- \bullet članovi k_{ij} su \oplus ili \bigcirc : ovisno o obliku progiba koji čuvaju
- sila od stvarnog pomaka = sila od jediničnog pomaka · stvarni pomak
- u smjeru 1 (i = 1): $f_{S1} = k_{11}u_1 + \dots + k_{14}u_4 + \dots + k_{1N}u_N$
- općenito, u smjeru *i*: $f_{Si} = k_{i1}u_1 + \cdots + k_{iN}u_N$, $(k_{ij}$ u smjeru *i*)
- zbroj sila u smjeru *i* od pomaka u_j svakog čvora (j = 1, ..., N) (

• svakom smjeru $i = 1, \ldots, N$ pripada jedna jednadžba: matrično,

$$\begin{bmatrix} f_{S1} \\ f_{S2} \\ \vdots \\ f_{SN} \end{bmatrix} = \begin{bmatrix} k_{11} & \cdots & k_{14} & \cdots & k_{1N} \\ k_{21} & \cdots & k_{24} & \cdots & k_{2N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ k_{N1} & \cdots & k_{N4} & \cdots & k_{NN} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix} \xrightarrow{f_1} \sup_{k_{ij}} \frac{k_{ij}}{1} = \frac{f}{u_j} \\ f = k_{ij}u_j \\ f = k_{ij}u_j \\ u$$

- tvorba matrice **k** (simetrična je, odnosno $k_{ij} = k_{ji}$):
- izravno, opisanim postupkom: dobivamo stupce matrice k
- primjeri: prvi (k_{i1}) i četvrti (k_{i4}) stupac matrice, $(i = 1, \dots, N)$
- samo za jednostavnije sustave, složeni sustavi:
- zbrajanjem matrica krutosti elemenata metoda pomaka
- opći pristup prema metodi pomaka: metoda konačnih elemenata

Analiza drugog podmodela: sile prigušenja

- model trošenja energije: viskozno prigušenje
- vanjske sile *f*_{Dj}: nastaju zbog brzina *ù*_j
- posebno za $\dot{u}_j = 1$, ostale 0: promjena duljine dijagonala u vremenu
- to su brzine: nastaju unutarnje sile (sile u prigušivačima)
- u ravnoteži s vanjskim čvornim silama c_{ij}
- drže brzinu okvira od $\dot{u}_j = 1$ (ostale 0): postoje u svim čvorovima
- ukupna sila u smjeru *i* (za c_{ij} u smjeru *i*):

$$f_{Di} = c_{i1}\dot{u}_1 + c_{i2}\dot{u}_2 + \cdots + c_{ij}\dot{u}_j + \cdots + c_{iN}\dot{u}_N$$

• svakom smjeru pripada jedna jednadžba: matrično,

$$\begin{bmatrix} f_{D1} \\ f_{D2} \\ \vdots \\ f_{DN} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1N} \\ c_{21} & c_{22} & \cdots & c_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ c_{N1} & c_{N2} & \cdots & c_{NN} \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \vdots \\ \dot{u}_N \end{bmatrix}$$
$$\mathbf{f}_D = \mathbf{c}\dot{\mathbf{u}}$$

- članovi c_{ij}: ne određuju se iz svojstava i dimenzija zgrade
- ullet pokusom se utvrđuje koeficijent prigušenja ζ
- ullet posebni postupci: proračun matrice prigušenja ullet iz ζ

Analiza trećeg podmodela: sile inercije

- vanjske sile $f_{lj}(t)$: nastaju zbog ubrzanja $\ddot{u}_j(t)$ masa štapova
- posebno za $\ddot{u}_j = 1$ (ostala 0): pojava sila DUŽ štapova⁹
- prema D'Alambertu: to su sile inercije protivne ubrzanju

⁹masa distribuirana duž štapova

- vanjske sile mij moraju uravnotežiti sile inercije duž štapova
- drže ubrzanje okvira od $\ddot{u}_i = 1$ (ostala 0): postoje u svim čvorovima

- vanjska sila m_{ij} : sila u smjeru *i* zbog $\ddot{u}_j = 1$, (i = 1, ..., N)
- primjer: razdioba sila m_{i1} , (i = 1, ..., 8)
- u ravnoteži sa silama inercije duž štapova
- slično: m_{i4} , (i = 1, ..., 8) nastaju zbog $\ddot{u}_4 = 1$ (ostala 0)
- sila f_{li} u smjeru i:

$$f_{Ii} = m_{i1}\ddot{u}_1 + m_{i2}\ddot{u}_2 + \cdots + m_{ij}\ddot{u}_j + \cdots + m_{iN}\ddot{u}_N$$

• svakom smjeru ($i = 1, \dots, N$) pripada jedna jednadžba:

$$\begin{bmatrix} f_{I1} \\ f_{I2} \\ \vdots \\ f_{IN} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1N} \\ m_{21} & m_{22} & \cdots & m_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ m_{N1} & m_{N2} & \cdots & m_{NN} \end{bmatrix} \begin{bmatrix} \ddot{u}_1 \\ \ddot{u}_2 \\ \vdots \\ \ddot{u}_N \end{bmatrix}$$

- masa uvijek distribuirana: dovoljna diskretizacija u čvorove
- aproksimacija koncentriranim (diskretnim) masama
- određene statički: prema dijelu težine koji pripada čvoru
- primjer: reakcije grede dvije koncentrirane mase u čvorovima
- ukupna masa u čvoru: zbroj doprinosa svih elemenata
- dobivamo mase m_a, \ldots, m_f (nema mase duž štapova)
- tvorba matrice masa po stupcima: primjenom jediničnih ubrzanja

• vanjske sile za $\ddot{u}_1 = 1$ (translacijsko ubrzanje):

•
$$m_{11} = m_a + m_b + m_c$$
, $m_{i1} = 0$, $(i = 2, ..., 8)$

- ostali čvorovi nemaju ubrzanje (nema mase duž štapova)
- slično za $\ddot{u}_4 = 1$ (rotacijsko ubrzanje):
 - $m_{44} = m_4$, rotacijska inercija mase u srednjem čvoru
 - ovisi o obliku mase: primjerice, kružni disk, $I_0 = mR^2/2$
 - mali doprinos silama inercije: redovito uzimamo $m_{44}=0$
 - 1. razlog: translacija pokreće veću masu (cijelu etažu, vidjeti m_1)
 - 2. razlog: rijetke i slabe rotacijske pobude oko horizontalne osi
 - ostale mase nisu pomične (gipki okvir): $m_{i4} = 0$, $(i \neq 4)$
- zaključak: koncentrirane mase dijagonalna matrica masa

$$m_{ij}=0, \qquad i
eq j, \qquad m_{jj}=m_j \;\; {
m ili}\; 0 \;\; ({
m za\; rotaciju})$$

- tvorba matrice: najčešće samo od translacijskih masa
- pridružene smjerovima x i y u ravnini, x, y i z u prostoru
Sustav s više stupnjeva slobode: poopćenje

- ullet pojednostavnjenje za zgrade: ploča ∞ kruta u svojoj ravnini (AB)
- razlog: velika krutost prema fleksijskoj krutosti zidova i stupova
- ploča ostaje fleksibilna (zadržava krutost) prema savijanju
- posljedica: svi čvorovi u ravnini ploče tri ista stupnja slobode

- jednaki stupnjevima slobode gibanja ploče kao krutog diska
- za ploču kata j: translacije (u_{j_X}, u_{j_Y}) i rotacija $(u_{j\theta})$ centra masa
- mase: translacijske u smjeru x i y, rotacijska oko uspravne osi z

Sustav s više stupnjeva slobode: poopćenje

• za pravokutnu ploču površinske mase \overline{m} i tlocrtnih dimenzija *a*, *b*: $a^2 + b^2$

$$m = m_{jx} = m_{jy} = \overline{m}ab,$$
 $m_{j\theta} = m\frac{a+b}{12}$

- masa: vlastita težina, stalno i dio pokretnog (propisi, NAD)
- dodati: sudjelujući dio stupova i zidova etaže (nosivih i pregradnih)

- uzdužno podatljivi stropovi (grednik s oplatom): $\mathit{EA}
 ightarrow \infty$ ne vrijedi
- ullet mase u čvorovima: prema sudjelujućim površinama (1) do (6)
- matrica krutosti: sadrži i AKSIJALNU i fleksijsku krutost ploče

Sustav s više stupnjeva slobode: međuovisnost jednadžbi

Međusobna ovisnost jednadžbi

• 1 • superpozicija podmodela:
$$\mathbf{f}_I + \mathbf{f}_D + \mathbf{f}_S = \mathbf{p}(t)$$
 i

$$\mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = \mathbf{p}(t)$$

- **2** sustav od *N* diferencijalnih jednadžbi (*N* broj stupnjeva slobode)
- rješenje: vektor $\mathbf{u}(t) = \begin{bmatrix} u_1 & \cdots & u_N \end{bmatrix}^{\mathrm{T}}$, $\begin{bmatrix} \text{derivacijom: } \dot{\mathbf{u}}(t) \mid \ddot{\mathbf{u}}(t) \end{bmatrix}$
- matrični zapis ekvivalentan jednadžbi za jedan stupanj slobode
- skalarne vrijednosti zamijenjene matricama i vektorima reda N:

$$m \longrightarrow \mathbf{m}, \quad c \longrightarrow \mathbf{c}, \quad k \longrightarrow \mathbf{k}$$

$$\ddot{u} \longrightarrow \ddot{\mathbf{u}}, \quad \dot{u} \longrightarrow \dot{\mathbf{u}}, \quad u \longrightarrow \mathbf{u}, \quad p(t) \longrightarrow \mathbf{p}(t)$$

- općenito: matrice pune jednadžbe međusobno ovisne
- pojašnjenje: u jednoj jednadžbi više nepoznanica uj
- poseban slučaj: matrice dijagonalne jednadžbe neovisne
- jedna jednadžba jedna nepoznanica

Sustav s više stupnjeva slobode: statička kondenzacija

Statička kondenzacija

- eliminacija dinamičkih stupnjeva slobode za koje je $m_i = 0$
- ostaju u statičkoj analizi za tvorbu matrice k
- statički model: zanemarene samo uzdužne deformacije štapova
- inženjerska metoda pomaka: 8 stupnjeva slobode
- dinamički model: najčešće translacijske mase u čvorovima
- posljedice: dijagonalna **m** i $m_i = 0$ za rotacijske st. slobode
- često: pobuda ne sadrži rotacijske komponente (potres)
- stupnjevi slobode bez m_i i p_i: eliminacija iz dinamičkog proračuna

Sustav s više stupnjeva slobode: statička kondenzacija

- statički model: često sadrži i vertikalne stupnjeve slobode
- razlog: važne uzdužne deformacije stupova (u skladu s 259 4 iznimke)
- u dinamičkom modelu: nisu potrebni za translacijsku pobudu
- razlog: mala ubrzanja u rotacijskom i vertikalnom smjeru

• 2712 • jednadžbe grupiramo po statičkim \mathbf{u}_0 i dinamičkim \mathbf{u}_t st. sl.

• mase u čvorovima

 $\begin{bmatrix} \mathbf{m}_{tt} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{u}}_t \\ \ddot{\mathbf{u}}_0 \end{bmatrix} + \begin{bmatrix} \mathbf{k}_{tt} & \mathbf{k}_{t0} \\ \mathbf{k}_{0t} & \mathbf{k}_{00} \end{bmatrix} \begin{bmatrix} \mathbf{u}_t \\ \mathbf{u}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_t(t) \\ \mathbf{0} \end{bmatrix}^{\bullet} \begin{array}{l} \mathbf{m} (\mathbf{m}_{tt}) \text{ dijagonalna} \\ \bullet \text{ nema rotacijske mase} \\ \bullet \text{ nema rotacijske pobude} \end{array}$

• translacije (t) dinamički, a rotacije (0), statički st. slobode

Sustav s više stupnjeva slobode: statička kondenzacija

• statički stupnjevi slobode: bez pridružene mase

$$\mathbf{m}_{tt}\ddot{\mathbf{u}}_t + \mathbf{k}_{tt}\mathbf{u}_t + \mathbf{k}_{t0}\mathbf{u}_0 = \mathbf{p}_t(t), \qquad \mathbf{k}_{0t}\mathbf{u}_t + \mathbf{k}_{00}\mathbf{u}_0 = \mathbf{0}$$

ullet druga jednadžba: nema sila inercije i pobude u smjeru $ullet _0$

• posljedica (nakon množenja s \mathbf{k}_{00}^{-1}): statička \mathbf{P} ovisnost \mathbf{u}_0 o \mathbf{u}_t ,

$$\mathbf{u}_0 = -\mathbf{k}_{00}^{-1}\mathbf{k}_{0t}\mathbf{u}_t$$

• uvrštavanjem u prvu jednadžbu (uz $\mathbf{k}_{t0} = \mathbf{k}_{0t}^{\mathrm{T}}$, jer je \mathbf{k} simetrična):

$$\mathbf{m}_{tt}\ddot{\mathbf{u}}_t + \mathbf{k}_{tt}\mathbf{u}_t - \mathbf{k}_{0t}^{\mathrm{T}}\mathbf{k}_{00}^{-1}\mathbf{k}_{0t}\mathbf{u}_t = \mathbf{p}_t(t)$$

• izlučimo \mathbf{u}_t (i $\hat{\mathbf{k}}_{tt} = \mathbf{k}_{tt} - \mathbf{k}_{0t}^{\mathrm{T}} \mathbf{k}_{00}^{-1} \mathbf{k}_{0t}$ – kondenzirana matrica krutosti):

$$\mathbf{m}_{tt}\ddot{\mathbf{u}}_t + \hat{\mathbf{k}}_{tt}\mathbf{u}_t = \mathbf{p}_t(t)$$

manji sustav jednadžbi od polaznoga

$$\mathbf{k}_{0t}^{\mathrm{T}} \mathbf{k}_{00}^{-1} \mathbf{k}_{0t} = 2 \underbrace{\mathbf{k}_{0t}^{\mathrm{T}}}_{6} \cdot 6 \underbrace{\mathbf{k}_{00}^{-1}}_{6} \cdot 6 \underbrace{\mathbf{k}_{0t}}_{2} = 2 \underbrace{\hat{\mathbf{k}}_{tt}}_{2} \text{ matrica reda } 2!$$

- rješenje problema: dinamički stupnjevi slobode \mathbf{u}_t
- primjer: polazni sustav 8, dinamički samo 2 stupnja slobode
- iz $(274 \cdot ovisnosti)$ kondenzirani stupnjevi slobode \mathbf{u}_0 u bilo kojem t
- osnovni i konačni sustav oblikovno slični (bez prigušenja):

$$\mathbf{m}\ddot{\mathbf{u}} + \mathbf{k}\mathbf{u} = \mathbf{p}(t), \quad \mathbf{m}_{tt}\ddot{\mathbf{u}}_t + \hat{\mathbf{k}}_{tt}\mathbf{u}_t = \mathbf{p}_t(t)$$

- smatrajmo: statička kondenzacija obavljena
- osnovni zapis sadrži samo dinamičke stupnjeve slobode

Ravninski sustav: translacijska pobuda potresom

- glavno svojstvo: dinamički stupnjevi slobode u smjeru pobude
- primjeri: model zgrade ili dimnjaka

• • pomaci mase j: $u_j^t(t) = u_j(t) + u_g(t)$, vektorski, za sve mase,

$$\mathbf{u}^{t}(t) = \mathbf{u}(t) + u_{g}(t)\mathbf{1}, \qquad \mathbf{1} = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^{\mathrm{T}}$$

• vrijedi 2711 • dinamička ravnoteža, ali bez vanjskog opterećenja:

$$\mathbf{f}_I + \mathbf{f}_D + \mathbf{f}_S = \mathbf{0}$$

• gibanje krutog tijela: nema savijanja stupova i rada prigušivača

- $f_{\mathcal{S}}$ i $f_{\mathcal{D}}$ slično jednom st. sl. (str. 36.): samo od relativnog gibanja (u, $\dot{u})$
- ali sile inercije: zbog ukupnog ubrzanja ($\mathbf{f}_I = \mathbf{m}\ddot{\mathbf{u}}^t$)

$$\mathbf{m}\underbrace{\begin{bmatrix}\ddot{\mathbf{u}}+\ddot{u}_g\mathbf{1}\end{bmatrix}}_{\ddot{\mathbf{u}}^t} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = \mathbf{0}, \qquad \mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = -\mathbf{m}\mathbf{1}\ddot{u}_g(t)$$

- 1 sustav od N 2 diferencijalnih jednadžbi (**k** kondenzirana, reda N, $\mathbf{k} = \hat{\mathbf{k}}_{tt}$)
- eliminirani vertikalni pomaci i kutovi zaokreta (str. 275.)
- odnosi se samo na dinamičke (horizontalne, bočne) pomake u
- česti naziv: MATRICA BOČNE KRUTOSTI
- za opterećenje vanjskim silama (str. 271.): $\mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = \mathbf{p}(t)$
- iste lijeve strane diferencijalnih jednadžbi

• znači, i desne strane jednake:

 $\mathbf{p}_{ ext{eff}}(t) = -\mathbf{m} \mathbf{1} \ddot{u}_g(t), \quad ext{efektivna sila potresa}$

• poopćenje: stupnjevi slobode nisu u smjeru gibanja potresa,

$$u_j^t(t) = u_j^s(t) + u_j(t), \qquad \mathbf{u}^t(t) = \mathbf{u}^s(t) + \mathbf{u}(t)$$

- kvazistatički¹⁰ pomak u^s_i: zbog statičkog (sporog) pomaka tla
- pomak u_j: dinamički, relativan prema u^s_i
- vrijedi: $\mathbf{u}^{s}(t) = \ell u_{g}(t), \ \ell$ utjecajni vektor
- sadrži pomake masa zbog statičkog (sporog) $u_g = 1$:

$$\boldsymbol{\ell} = \begin{bmatrix} \ell_1 & \cdots & \ell_n \end{bmatrix}^{\mathrm{T}}$$

- ukupni pomak: $\mathbf{u}^t(t) = \ell u_g(t) + \mathbf{u}(t)$
- prema ranijem postupku (str. 277.):

$$\mathbf{m}\underbrace{\begin{bmatrix}\ddot{\mathbf{u}}+\ddot{u}_{g}\boldsymbol{\ell}\end{bmatrix}}_{\ddot{\mathbf{u}}^{t}}+\mathbf{c}\dot{\mathbf{u}}+\mathbf{k}\mathbf{u}=\mathbf{0},\qquad\mathbf{m}\ddot{\mathbf{u}}+\mathbf{c}\dot{\mathbf{u}}+\mathbf{k}\mathbf{u}=-\mathbf{m}\,\boldsymbol{\ell}\ddot{u}_{g}(t)$$

ullet ullet efektivna sila potresa: $oldsymbol{p}_{ ext{eff}}(t) = -oldsymbol{m} \ell \ddot{u}_g(t)$

¹⁰zbog statičkog djelovanja dinamičkog opterećenja

• prethodni primjer (st. sl. u smjeru pobude): za $u_g=1$, $\ell=1$

- L okvir: dinamički stupanj slobode u₃ nije u smjeru pobude
- štapovi uzdužno apsolutno kruti: isti pomak (u_2) masa m_2 i m_3
- iz istog razloga: vertikalni pomaci m_1 i m_2 jednaki nuli
- dinamički stupnjevi slobode (slika): $\mathbf{u} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^{\mathrm{T}}$

Sustav s više stupnjeva slobode: tlocrtno simetrični sustav

- primijetimo: greda uzdužno kruta, m₂ i m₃ istog ubrzanja
- posljedica: za $\ddot{u}_2=1$ pripadajuća masa m_2+m_3
- horizontalna pobuda: nema efektivne sile u vertikalnom smjeru

Tlocrtno simetrična zgrada: translacijska pobuda potresom

ho ho model: prostorni okvir – stupovi, grede i ploče, $EA
ightarrow \infty$

Sustav s više stupnjeva slobode: tlocrtno simetrični sustav

- simetrična, tlocrtna razdioba masa i krutosti
- neovisna analiza u bočnim smjerovima x i y
- smjer x: vrijedi jednadžba $\mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = -\mathbf{m}\mathbf{1}\ddot{u}_g(t)$
- matrica **m**: dijagonalna, *m_j* etaže u centru masa ploče *j* (str. 269.)
- matrica **k**: sadrži bočne krutosti zgrade u smjeru x
- još jednom: ZBROJ bočnih krutosti okvira smjera x
- bočna krutost okvira i (str. 277.): određena matricom **k**_{xi}
- kondenzirana: bez rotacija i vertikalnih pomaka čvorova
- veza bočnih sila i pomaka jednog okvira (str. 282.): $\mathbf{f}_{Si} = \mathbf{k}_{xi} \mathbf{u}_{xi}$
- apsolutno krute ploče: jednak bočni pomak svih okvira,

$$\mathbf{u}_{xi} = \mathbf{u}_x, \qquad \mathbf{u}_x = \begin{bmatrix} u_{1x} & \cdots & u_{jx} & \cdots & u_{Nx} \end{bmatrix}^{\mathrm{T}}$$

• pomak u_{jx}: bočni (horizontalni) pomak ploče j u centru masa

Sustav s više stupnjeva slobode: rotacijska pobuda

• ukupna bočna sila na zgradu (zbroj bočnih sila u okvirima):

$$\mathbf{f}_{S} = \sum_{i=1}^{M} \mathbf{f}_{Si} = \sum_{i=1}^{M} \mathbf{k}_{xi} \mathbf{u}_{xi} = \mathbf{u}_{x} \sum_{i=1}^{M} \mathbf{k}_{xi} = \underbrace{(\mathbf{k}_{x1} + \dots + \mathbf{k}_{xM})}_{\mathbf{k}_{x}} \mathbf{u}_{x}$$
$$\mathbf{f}_{S} = \mathbf{k}_{x} \mathbf{u}_{x}, \qquad \mathbf{k}_{x} = \sum_{i=1}^{M} \mathbf{k}_{xi}, \quad \text{(komponente } f_{Sj} \text{ djeluju u c. m.}$$

- bočna krutost zgrade: matrica k_x reda N (N etaža pomaka)
- tvorba: zbroj matrica \mathbf{k}_{xi} pojedinih okvira (reda N)
- u osnovnoj jednadžbi za smjer x: $\mathbf{k} = \mathbf{k}_x$
- sličan postupak za okvire u smjeru y: $\mathbf{k} = \mathbf{k}_y$, ista matrica **m**

Ravninski sustav: rotacijska pobuda potresom

- rotacijska pobuda: ne mjeri se izravno, mali broj zapisa
- procjena iz translacijskih pobuda na poznatim dubinama

Sustav s više stupnjeva slobode: rotacijska pobuda

- ukupni pomak: $\mathbf{u}^t(t) = \mathbf{u}(t) + \ell \theta_g(t)$
- pomak **u**(*t*): povezan s deformacijom modela (poput str. 279.)
- pomak $\mathbf{u}^{s}(t) = \ell heta_{g}(t)$: apsolutno kruti pomak sustava
- nastaje zbog statičkog djelovanja θ_g

• • pomaci zbog $\theta_g = 1$: utjecajni vektor, $\ell = \tan \theta_g \begin{bmatrix} h_1 & h_2 & x_3 \end{bmatrix}^T$

• mali kutovi: vrijedi tan $heta_g pprox heta_g = 1$, pa je $m\ell = egin{bmatrix} h_1 & h_2 & x_3 \end{bmatrix}^{ ext{T}}$

Sustav s više stupnjeva slobode: rotacijska pobuda

• deriviranjem ukupnog pomaka • dobivamo:

$$\mathbf{m}\underbrace{\left[\overset{\mathbf{\ddot{u}}}{\underbrace{\mathbf{\ddot{u}}}}_{\mathbf{\ddot{u}}^{t}}\right]}_{\mathbf{\ddot{u}}^{t}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = \mathbf{0}, \qquad \mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = -\mathbf{m}\,\boldsymbol{\ell}\ddot{\boldsymbol{\theta}}_{g}(t)$$

efektivna sila potresa:

$$\mathbf{p}_{\text{eff}}(t) = -\mathbf{m}\,\ell\ddot{\theta}_g(t) = -\ddot{\theta}_g(t) \begin{bmatrix} m_1 & 0 & 0\\ 0 & m_2 + m_3 & 0\\ 0 & 0 & m_3 \end{bmatrix} \begin{bmatrix} h_1\\ h_2\\ x_3 \end{bmatrix}$$

odnosno:

$$\mathbf{p}_{ ext{eff}}(t) = -\ddot{ heta}_g(t) egin{bmatrix} m_1h_1\ (m_2+m_3)h_2\ m_3x_3 \end{bmatrix}$$

- rotacijska pobuda ali translacija masa: **m** kao za translaciju (str. 281.)
- greda uzdužno kruta: m₂ i m₃ istog horizontalnog ubrzanja
- rotacijska pobuda: postoji efektivna sila u vertikalnom smjeru

Sustav s više stupnjeva slobode: neelastični sustav

- funkcija $f_S u^{(25 \cdot nije linearna:)}$
 - veći iznosi sile: krivljenje početnog dijela
 - pri rasterećenju (opterećenju): krivulje se ne podudaraju
 - funkcija nije jednoznačna: važna povijest pomaka
- simbolički zapis ovisnosti (petlje histereze): $f_{\mathcal{S}}=f_{\mathcal{S}}(u)$
- uvijek (za svaki t) vrijedi jednadžba (ravnoteža!) gibanja:

$$\mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \underbrace{\mathbf{f}_{S}(\mathbf{u})}_{\neq \mathbf{k}\mathbf{u}} = -\mathbf{m}\,\ell\ddot{u}_{g}(t)$$

- ullet pretpostavka: istodobna pobuda svih ležajeva (∞ kruto tlo)
- model energijskih gubitaka: određen matricom prigušenja c,
 - u elastičnom području (str. 27.): različiti oblici trenja, otpor zraka, ...
 - u plastičnom području (str. 29.): razlika prema dinamičkom pokusu
- ullet dodatni gubitci u plastičnom području: izravno, zadavanjem ${f f}_S$
- rješavanje: numerički, metodama vremenskog prirasta

Sustav s više stupnjeva slobode: slijed proračuna

Proračun pomaka, brzina i ubrzanja

- zadano: m, c, k ili $f_S(u)$, p(t) ili $\ddot{u}_g(t)$
- odrediti odziv: ponašanje neke veličine u vremenu
- važne relativne vrijednosti: u, u i u
- za potres i ukupne vrijednosti: \mathbf{u}^t , $\dot{\mathbf{u}}^t$ i $\ddot{\mathbf{u}}^t$
- najvažnije: $\mathbf{u}(t)$ unutarnje sile izravno ovise o pomacima

Proračun unutarnjih sila

- dinamička analiza (tri pristupa, str. 289.–291.): određen $\mathbf{u}(t)$
- statička analiza: odrediti unutarnje sile i naprezanja
- dva pristupa (za svaki t):

 - ekvivalentne statičke sile: $\mathbf{f}_{S}(t) = \mathbf{k}\mathbf{u}(t) vanjsko opterećenje statička analiza za <math>\mathbf{f}_{S}(t)$ u bilo kojem t: unutarnje sile, naprezanja

Sustav s više stupnjeva slobode: postupci proračuna

Klasična modalna analiza: dijagonalizacija izvornog sustava

- široka primjena: linearni sustavi s klasičnim prigušenjem
- postoje klasični prirodni periodi i oblici titranja
- transformacija sustava iz izvornih u modalne koordinate
- posljedica: niz neovisnih jednadžbi s jednim stupnjem slobode
- svaka jednadžba: jedan oblik, period i prigušenje titranja
- pobuda: jednostavna (formula) ili složena (niz podataka)
- proračun pojedine jednadžbe: analitički ili numerički
- ukupni odziv sustava: zbroj odziva za svaku jednadžbu
- ne vrijedi ako ne postoji rastav na niz neovisnih jednadžbi, npr.:
 - sustavi s izrazito različitim prigušenjima pojedinih dijelova primjer: model konstrukcije ($\zeta = 5\%$) i okolnog tla ($\zeta = 20\%$)
 - neelastični sustavi, bez obzira na oblik prigušenja primjer: elastoplastična ovisnost sile i pomaka

Sustav s više stupnjeva slobode: postupci proračuna

Kompleksni problem vlastitih vrijednosti

- također transformacija iz izvornih u modalne koordinate
- čak i za opću (ne samo klasičnu) matricu prigušenja
- prednost: niz neovisnih jednadžbi bez obzira na tip prigušenja (

Sustav s više stupnjeva slobode: postupci proračuna

Izravno rješavanje izvornog sustava

- numerički, metodama vremenskog prirasta
- rješenje nije analitičko, čak i za jednostavnu pobudu
- opći pristup: vrijedi za linearne i nelinearne modele

Analiza sustava s više stupnjeva slobode	
Klasična modalna analiza	Izravna analiza
 rastav na neovisne jednadžbe 	• polaznih, ovisnih jednadžbi
Vrijedi za:	Vrijedi za:
linearni sustavklasično prigušenje	 linearni ili nelinearni sustav klasično ili opće prigušenje
Rješenje:	Rješenje:
 analitičko (jednostavna pobuda) numeričko (složena pobuda) 	 isključivo numeričko

• 1 • slobodno titranje $({f p}(t)={f 0})$, bez prigušenja $({f c}={f 0})$: mü $+{f k}{f u}={f 0}$

- sustav od N homogenih, povezanih diferencijalnih jednadžbi
- razlog povezanosti: u općem slučaju m, češće k nisu dijagonalne
- $\mathbf{U} = \mathbf{u}(t)$: zadovoljava $\mathbf{U} = \mathbf{u}(0)$ i $\dot{\mathbf{u}}(0)$ (jedine pobude)

- promatramo slobodno titranje (1 dvoetažnog posmičnog okvira)
- krutosti etaža: 2k i k; mase u razini greda: 2m i m
- pobuda: početni oblik pomaka a (nije jedini mogući!)
- protivno slobodnom titranju jednog stupnja slobode:
 - pomaci u₁ i u₂ nisu jednostavna harmonijska gibanja masa
 - periodi titranja masa nisu definirani
- omjer u_1/u_2 nije sačuvan (oblici *a*, *b* i *c* nisu slični):

 $u_1(a)/u_2(a) \neq u_1(b)/u_2(b) \neq u_1(c)/u_2(c)$

- pojašnjenje: oblici a, b i c nisu povezani do na koeficijent
- pitanje: Kako pobuditi okvir na harmonijsko gibanje?
- odgovor: prikladnom razdiobom početnih pomaka okvira
- ullet oblik pomaka (omjer u_1/u_2) ostaje sačuvan prilikom titranja
- sustav s dva stupnja slobode: postoje dva takva oblika
 -) 🕐 naziv: PRIRODNI OBLICI TITRANJA (vektori ϕ_1 i ϕ_2)

$$\mathbf{u}(0) = \phi_1 = \begin{bmatrix} \phi_{11} & \phi_{21} \end{bmatrix}^{\mathrm{T}}$$
 ili $\mathbf{u}(0) = \phi_2 = \begin{bmatrix} \phi_{12} & \phi_{22} \end{bmatrix}^{\mathrm{T}}, \ \dot{\mathbf{u}}(0) = \mathbf{0}$

- mase titraju istim periodom i istodobno dostižu ekstremne pomake
- istodobno prolaze kroz uspravni položaj okvira ($u_1 = 0$ i $u_2 = 0$)
- prvi oblik titranja: $u_1/u_2 = \text{const.}$ i pomaci masa u istom smjeru

- drugi oblik titranja: $u_1/u_2 = \text{const.}$ i nasuprotni pomaci masa
- postoji nultočka (čvor): nepomična točka pri titranju
- broj nultočaka raste s porastom rednog broja oblika titranja

• prirodni period titraja: vrijeme potrebno za jedan titraj ($a \rightleftharpoons e$),

$$T_n = \frac{2\pi}{\omega_n} \, [s]$$

• prirodna (ciklička) frekvencija titraja:

$$f_n = \frac{1}{T_n} [\text{Hz}]$$

• indeks *n*: označava redni broj¹¹ oblika titranja (n = 1, 2)

• za oblike titranja obično vrijedi:

$$\omega_1 < \omega_2 < \cdots < \omega_n, \qquad (T_1 > T_2 > \cdots > T_n)$$

- sjetimo se: sustav s jednim st. sl. izravno pobudimo harmonijski
- razlog: nakon otpuštanja titra jedinim, prirodnim oblikom titranja
- sustav s više stupnjeva slobode: možemo pobuditi na različite načine
- za harmonijsko gibanje: početni pomaci prirodni oblik titranja

 $^{^{11}}$ ipak i dalje nas podsjeća na engleski $\operatorname{NATURAL}$

Proračun prirodnih frekvencija i oblika titranja

• **1•** zapis slobodnog titranja u obliku JEDNOG ϕ_n (str. 294. ili 295.):

 $\mathbf{u}(t) = q_n(t)\phi_n,$ (u primjeru: n = 1 ili 2)

- OBLIK (prostorna razdioba) titranja: određen s $\phi_n = \begin{bmatrix} \phi_{1n} & \phi_{2n} \end{bmatrix}^{\mathrm{T}}$
- sadrži ekstremne ordinate ϕ_{jn} (u primjeru: j = 1, 2)
- ordinate nisu promjenjive u vremenu (ne ovise o t)
- VREMENSKA PROMJENA ORDINATA: harmonijska funkcija (str. 294., 295.)

$$q_n(t) = A_n \cos \omega_n t + B_n \sin \omega_n t$$
, (kao za jedan st. sl.)

- logično rješenje: jer mase titraju lijevo desno nakon otpuštanja
- određivanje konstanata An i Bn: jednoznačno, iz dva početna uvjeta
- primijetite: sve mase titraju prema istom zakonu $q_n(t)$

• 2 Konačno:
$$\mathbf{u}(t) = \phi_n(A_n \cos \omega_n t + B_n \sin \omega_n t)$$

• nepoznanice problema: ω_n i ϕ_n

- $\bullet\,$ uvrstimo rješenje u polaznu jednadžbu: $m\ddot{u}+ku=0$
- uz: $\ddot{\mathbf{u}}(t) = -\omega_n^2 \phi_n(A_n \cos \omega_n t + B_n \sin \omega_n t) = -\omega_n^2 \phi_n q_n(t)$
- dobivamo: $\left[-\omega_n^2 \mathbf{m} \phi_n + \mathbf{k} \phi_n\right] q_n(t) = \mathbf{0}$
- trivijalno rješenje: $q_n(t)=$ 0, $\mathbf{u}(t)=q_n(t)\phi_n=$ 0, bez gibanja
- netrivijalno rješenje: izraz u zagradi jednak nuli
- nepoznanice ω_n i ϕ_n zadovoljavaju $\mathbf{k}\phi_n = \omega_n^2 \mathbf{m}\phi_n$
- poznato kao matrični problem vlastitih vrijednosti
- preciznije: realni problem vlastitih vrijednosti
- razlog: ω_n^2 i komponente vektora ϕ_n realni brojevi
- matrice **m** i **k** poznate: treba odrediti ω_n^2 i ϕ_n
- drugi zapis problema vlastitih vrijednosti: $\left[\mathbf{k} \omega_n^2 \mathbf{m}\right] \boldsymbol{\phi}_n = \mathbf{0}$
- sustav od N homogenih (jer je $\mathbf{p}(t) = \mathbf{0}$) algebarskih jednadžbi
- nepoznato: ω_n i *N* komponenata vektora $\phi_n = \begin{bmatrix} \phi_{1n} & \cdots & \phi_{Nn} \end{bmatrix}^{\mathrm{T}}$

- ullet trivijalno rješenje: nulvektor $\phi_n=oldsymbol{0}$, nema titranja
- netrivijalno rješenje homogenog sustava: det $\left[\mathbf{k} \omega_n^2 \mathbf{m}\right] = 0$
- raspis determinante: polinom reda N po ω_n^2
- naziv polinoma: KARAKTERISTIČNI ili FREKVENCIJSKI POLINOM

- npr. za dva stupnja slobode: $a \omega_n^4 + b \omega_n^2 + c = 0$
- kvadratna jednadžba po ω_n^2

• dvije nultočke:
$$\omega_1^2$$
 i ω_2^2

• korijeni (nultočke – det. nula) polinoma: ω_n^2 – realni i pozitivni brojevi

- razlog: matrice **m** i **k** simetrične i pozitivno definitne
- postoje uvjeti za pozitivnu definitnost u građevinarstvu
- za matricu k: ispravna mreža, broj i raspored ležajeva

- spriječeni pomaci krutog tijela
- za matricu **m**: statička kondenzacija
- eliminacija st. sl. bez pridružene koncentrirane mase (rotacije)
- postoji N korijena ω_n^2 : određuju frekvencije ω_n $(n = 1, \dots, N)$
- korijeni karakterističnog polinoma: VLASTITE VRIJEDNOSTI
- poznato ω_n : iz $[\mathbf{k} \omega_n^2 \mathbf{m}] \phi_n = \mathbf{0}$ odredimo ϕ_n
- ullet vektor ϕ_n određen do na konstantu a: i $a\phi_n$ rješenje problema
- zapamtite: APSOLUTNI iznosi ordinata nisu određeni
- definiran samo <code>OBLIK</code> titranja ϕ_n , preciznije,
- relativni odnosi (omjeri) među ordinatama (komponentama) ϕ_{jn}
- ullet svakoj frekvenciji ω_n pripada jedan prirodni oblik titranja ϕ_n
- riječ ${\scriptstyle \mathrm{PRIRODNI:}}$ naglašava titranje bez pobude, ovisi samo o m i k
- 2932 < drugi naziv za ϕ_n : VLASTITI (SVOJSTVENI) VEKTORI
- prvi oblik titranja ϕ_1 : temeljni (osnovni) oblik titranja

Matrični zapis problema: modalna i spektralna matrica

- matrični pristup: skraćeni zapis svih ω_n i ϕ_n
- oblici titranja: vektori $\boldsymbol{\phi}_n = \begin{bmatrix} \phi_{1n} & \cdots & \phi_{Nn} \end{bmatrix}^{\mathrm{T}}$, $n = 1, \dots, N$
- stupci MODALNE MATRICE problema vlastitih vrijednosti:

$$\boldsymbol{\Phi} = \begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_N \end{bmatrix}, \quad \boldsymbol{\Phi} = \begin{bmatrix} \phi_{11} & \phi_{12} & \cdots & \phi_{1N} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{N1} & \phi_{N2} & \cdots & \phi_{NN} \end{bmatrix}$$

• članovi spektralne matrice problema vlastitih vrijednosti:

$$\mathbf{\Omega}^2 = egin{bmatrix} \omega_1^2 & 0 & \cdots & 0 \ 0 & \omega_2^2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & 0 & \omega_N^2 \end{bmatrix}$$

- dijagonalna matrica: vlastite vrijednosti ω_n^2 na dijagonali
- prepišimo $\mathbf{k}\phi_n = \omega_n^2 \mathbf{m}\phi_n$: $\mathbf{k}\phi_n = \mathbf{m}\phi_n\omega_n^2$, $n = 1, \dots, N$
- desna strana: umnožak skalara i vektora vrijedi komutacija
- zapis svih *N* jednadžbi jednom formulom ($\phi_n \to \Phi$, $\omega_n^2 \to \Omega^2$): $\mathbf{k} \Phi = \mathbf{m} \Phi \Omega^2$
- raspisano za dvoetažni okvir (N = 2):

$$\begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} \omega_1^2 & 0 \\ 0 & \omega_2^2 \end{bmatrix}$$

$$\begin{bmatrix} k_{11}\phi_{11} + k_{12}\phi_{21} \\ k_{21}\phi_{11} + k_{22}\phi_{21} \end{bmatrix} \begin{bmatrix} k_{11}\phi_{12} + k_{12}\phi_{22} \\ k_{21}\phi_{12} + k_{22}\phi_{22} \end{bmatrix}$$

$$= \begin{bmatrix} m_{11}\phi_{11} + m_{12}\phi_{21} \\ m_{21}\phi_{11} + m_{22}\phi_{21} \end{bmatrix} \begin{bmatrix} m_{11}\phi_{12} + m_{12}\phi_{22} \\ m_{21}\phi_{11} + m_{22}\phi_{21} \end{bmatrix} \begin{bmatrix} \omega_1^2 & 0 \\ 0 & \omega_2^2 \end{bmatrix}$$

$$= \begin{bmatrix} \omega_1^2(m_{11}\phi_{11} + m_{12}\phi_{21} \\ \omega_1^2(m_{21}\phi_{11} + m_{22}\phi_{21}) \end{bmatrix} \begin{bmatrix} \omega_2^2(m_{11}\phi_{12} + m_{12}\phi_{22} \\ \omega_2^2(m_{21}\phi_{12} + m_{22}\phi_{22}) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{k}\phi_1 \mid \mathbf{k}\phi_2 \end{bmatrix} = \begin{bmatrix} \omega_1^2\mathbf{m}\phi_1 \mid \omega_2^2\mathbf{m}\phi_2 \end{bmatrix}$$

Ortogonalnost vlastitih vektora

• oblici titranja zadovoljavaju • uvjete ortogonalnosti:

$$\phi_n^{\mathrm{T}} \mathbf{k} \phi_r = 0$$

$$\phi_n^{\mathrm{T}} \mathbf{m} \phi_r = 0$$

$$za: \ \omega_n \neq \omega_r$$

$$\mathbf{k} \phi_r(\mathrm{ili} \ \mathbf{m} \phi_r)$$

$$\mathbf{u} \ \mathrm{smjeru} \ \mathrm{pomaka:}$$

$$\mathbf{u} = \begin{bmatrix} u_1 & \cdots & u_N \end{bmatrix}^{\mathrm{T}}$$

- skalarni produkt vektora ϕ_n i $\mathbf{k}\phi_r$ (ili $\mathbf{m}\phi_r$) jednak nuli
- za ω_n i ϕ_n vrijedi problem vlastitih vrijednosti:

$$\mathbf{k}\phi_n = \omega_n^2 \mathbf{m}\phi_n / \cdot \phi_r^{\mathrm{T}}, \qquad \phi_r^{\mathrm{T}} \mathbf{k}\phi_n = \omega_n^2 \phi_r^{\mathrm{T}} \mathbf{m}\phi_n$$

- slično vrijedi za ω_r i ϕ_r (množimo s $\phi_n^{\rm T}$): $\phi_n^{\rm T} \mathbf{k} \phi_r = \omega_r^2 \phi_n^{\rm T} \mathbf{m} \phi_r$
- transponiramo izraz za ω_n i ϕ_n : $\phi_r^{\mathrm{T}} \mathbf{k} \phi_n = \omega_n^2 \phi_r^{\mathrm{T}} \mathbf{m} \phi_n / {}^{\mathrm{T}}$
- uz $(\mathbf{a}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{a} i (\mathbf{a}^{\mathrm{T}}\mathbf{b})^{\mathrm{T}} = \mathbf{b}^{\mathrm{T}}\mathbf{a}: (\phi_{r}^{\mathrm{T}}\mathbf{k}\phi_{n})^{\mathrm{T}} = \phi_{n}^{\mathrm{T}}\mathbf{k}^{\mathrm{T}}(\phi_{r}^{\mathrm{T}})^{\mathrm{T}} = \underline{\phi_{n}^{\mathrm{T}}\mathbf{k}\phi_{r}}$
- jer je $\mathbf{k}^{\mathrm{T}} = \mathbf{k}$ (simetrična matrica)

• slično i za desnu stranu izraza za ω_n i ϕ_n (i **m** je simetrična):

$$(\omega_n^2 \boldsymbol{\phi}_r^{\mathrm{T}} \mathbf{m} \boldsymbol{\phi}_n)^{\mathrm{T}} = \omega_n^2 \boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{m}^{\mathrm{T}} (\boldsymbol{\phi}_r^{\mathrm{T}})^{\mathrm{T}} = \underline{\omega_n^2 \boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{m} \boldsymbol{\phi}_r}$$

• konačno (podcrtani izrazi):

$$\boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{k} \boldsymbol{\phi}_r = \omega_n^2 \boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{m} \boldsymbol{\phi}_r$$

• oduzimanjem od izraza za ω_r i ϕ_r (iste lijeve strane):

$$\left(\omega_n^2 - \omega_r^2\right) \boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{m} \boldsymbol{\phi}_r = \mathbf{0}$$

• vrijedi: $\phi_n^{\rm T} \mathbf{m} \phi_r = 0$ ako je $\omega_n^2 \neq \omega_r^2$ (ili $\omega_n \neq \omega_r$ jer su > 0)

• ako je $\omega_n \neq \omega_r$ iz izraza za ω_r i ϕ_r vrijedi i:

$$\boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{k} \boldsymbol{\phi}_r = \omega_r^2 \underbrace{\boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{m} \boldsymbol{\phi}_r}_{\mathbf{0}} = \mathbf{0}$$

ortogonalnost dokazana ako su frekvencije različite

- česti slučaj: jednoj frekvenciji pripada više (j) oblika titranja
- osnosimetrične građevine (kupola, vodosprema, silos, dimnjak)
- zgrade: grozdovi oblika titranja s istom (bliskom) frekvencijom

- nisu međusobno ortogonalni ($\omega_n = \omega_r$): moguća ortogonalizacija
- ullet odaberemo prvi (ϕ_i) : drugi (ϕ_{i+1}) ortogonaliziramo na prvi
- treći (ϕ_{i+2}) : ortogonaliziramo na prethodna dva, itd.
- ortogonaliziramo svih j oblika titranja s istom frekvencijom
- s preostalim oblicima: N ortogonalnih oblika (stupci matrice $\mathbf{\Phi}$)
- realizacija: inačice Gramm-Schmidtova postupka ortogonalizacije

• (1) posljedice ortogonalnosti:) KVADRATNE matrice K i M dijagonalne,

$$\mathbf{K} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{k} \, \mathbf{\Phi}, \ \left(K_{nr} = \phi_n^{\mathrm{T}} \mathbf{k} \, \phi_r \right), \quad \mathbf{M} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{m} \, \mathbf{\Phi}, \ \left(M_{nr} = \phi_n^{\mathrm{T}} \mathbf{m} \, \phi_r \right)$$

• članovi izvan dijagonale $(n \neq r)$: $K_{nr} = 0$ i $M_{nr} = 0$

•
$${}^{{}_{2}}$$
 · članovi na dijagonali) $(n=r)$: $K_n=\phi_n^{
m T}{f k}\,\phi_n,\ M_n=\phi_n^{
m T}{f m}\,\phi_n$

- K_n i M_n kvadratne forme: strogo pozitivni dijagonalni članovi
- razlog: k i m pozitivno definitne matrice
- veza među dijagonalnim članovima matrica **K** i **M**: $K_n = \omega_n^2 M_n$
- dokaz (rabimo $\mathbf{k}\phi_n = \omega_n^2 \mathbf{m}\phi_n$, str. 298.):

$$K_n = \phi_n^{\mathrm{T}} \mathbf{k} \phi_n = \phi_n^{\mathrm{T}} \underbrace{(\omega_n^2 \mathbf{m} \phi_n)}_{\mathbf{k} \phi_n} = \omega_n^2 \underbrace{(\phi_n^{\mathrm{T}} \mathbf{m} \phi_n)}_{M_n} = \omega_n^2 M_n$$

- Pobliže o problemu vlastitih vrijednosti:
- Matematika 3 i skripta Numerička analiza (PMF): http://www.grad.hr/nastava/matematika/mat3/node39.html http://web.math.hr/~rogina/2001096/num_anal.pdf (str. 42-50)

Fizikalne posljedice uvjeta ortogonalnosti

- ²⁹⁷¹ pomaci) konstrukcije pri gibanju u obliku ϕ_n : $\mathbf{u}_n(t) = q_n(t)\phi_n$
- pripadajuća ubrzanja i sile inercije:

$$\ddot{\mathbf{u}}_n(t) = \ddot{q}_n(t)\phi_n, \qquad (\mathbf{f}_I)_n = -\mathbf{m}\ddot{\mathbf{u}}_n(t) = -\mathbf{m}\phi_n\ddot{q}_n(t)$$

• pomaci pri gibanju u drugom obliku, ϕ_r : $\mathbf{u}_r(t) = q_r(t)\phi_r$

I rad sila inercije n-tog oblika na pomacima r-tog oblika:

$$(\mathbf{f}_I)_n^{\mathrm{T}}\mathbf{u}_r = -\underbrace{(\boldsymbol{\phi}_n^{\mathrm{T}}\mathbf{m}\boldsymbol{\phi}_r)}_{\mathbf{0}}\ddot{q}_n(t)q_r(t) = \mathbf{0}, \quad \left[\mathrm{uz}\,(\mathbf{f}_I)_n^{\mathrm{T}} = \boldsymbol{\phi}_n^{\mathrm{T}}\mathbf{m}\ddot{q}_n(t)\right]$$

– ekvivalentne statičke sile pri gibanju u obliku ϕ_n :

$$(\mathbf{f}_S)_n = \mathbf{k}\mathbf{u}_n(t) = \mathbf{k}\phi_n q_n(t)$$

In the static sila n-tog oblika na pomacima r-tog oblika:

$$(\mathbf{f}_{S})_{n}^{\mathrm{T}}\mathbf{u}_{r} = \underbrace{(\boldsymbol{\phi}_{n}^{\mathrm{T}}\mathbf{k}\boldsymbol{\phi}_{r})}_{0} q_{n}(t)q_{r}(t) = 0, \quad \left[\mathrm{uz} \ (\mathbf{f}_{S})_{n}^{\mathrm{T}} = \boldsymbol{\phi}_{n}^{\mathrm{T}}\mathbf{k}q_{n}(t)\right]$$

3 potvrda Bettijevog stavka¹² $\left[(\mathbf{f}_I)_n^{\mathrm{T}} \mathbf{u}_r = (\mathbf{f}_I)_r^{\mathrm{T}} \mathbf{u}_n, \text{ uz: } \ddot{q}_n = -\omega_n^2 q_n \right]$

Normiranje vlastitih vektora

- ${\scriptstyle \bullet }$ vlastiti vektori ϕ_n određeni do na konstantu
- proporcionalni (kolinearni) vektor $a\phi_n$ također vlastiti vektor

¹²V.Šimić: Otpornost materijala 2, Školska knjiga, Zagreb, str. 197

• jednostavan dokaz:

$$\mathbf{k} \underline{\phi}_n = \omega_n^2 \mathbf{m} \underline{\phi}_n$$

$$\mathbf{k}(\underline{a\phi_n}) = \mathbf{a}(\mathbf{k}\phi_n) = \mathbf{a}(\omega_n^2 \mathbf{m}\phi_n) = \omega_n^2 \mathbf{m}(\underline{a\phi_n})$$

- primjena konstante a: prikladno normiranje komponenata
- 1. primjer: najveća komponenta jednaka jedinici
- 2. primjer: važna komponenta (pomak vrha) jednaka jedinici
- računalni programi: najčešće $M_n = 1$ (jer je numerički učinkovito),

član (str. 306.):
$$M_n = \phi_n^{\mathrm{T}} \mathbf{m} \phi_n = 1$$
, matrica: $\mathbf{M} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{m} \mathbf{\Phi} = \mathbf{I}$

- oblici titranja ortogonalni (str. 303.) i normirani s obzirom na masu
- matematički: ortonormirani skup (baza) normiran na masu
- za tako normirane oblike vrijedi (prema str. 306. i 301.):

član:
$$K_n = \phi_n^{\mathrm{T}} \mathbf{k} \phi_n = \omega_n^2 M_n = \omega_n^2$$
, matrica: $\mathbf{K} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{k} \mathbf{\Phi} = \mathbf{\Omega}^2$

Raspis vektora pomaka po vlastitim vektorima

prema tome, <u>vrijedi:</u>

$$\mathbf{u} = \sum_{r=1}^N q_r \phi_r = \mathbf{\Phi} \mathbf{q}$$

- skalarni članovi (komponente) q_r: modalne (normalne) koordinate
- poznato ϕ_r za zadani **u**: odredimo q_r množimo **u** sa ϕ_n^{T} **m**

$$\phi_n^{\mathrm{T}}\mathbf{m}\mathbf{u} = \sum_{r=1}^N (\phi_n^{\mathrm{T}}\mathbf{m}\phi_r)q_r$$

• zbog ortogonalnosti (str. 303.) iščezavaju svi članovi osim za r = n:

$$\underbrace{\phi_n^{\mathrm{T}} \mathbf{m} \mathbf{u}}_{\text{skalar}} = \underbrace{(\phi_n^{\mathrm{T}} \mathbf{m} \phi_n)}_{\text{skalar}} q_n, \quad \textcircled{2 \text{ odnosno:}} \quad q_n = \frac{\phi_n^{\mathrm{T}} \mathbf{m} \mathbf{u}}{\phi_n^{\mathrm{T}} \mathbf{m} \phi_n} = \frac{\phi_n^{\mathrm{T}} \mathbf{m} \mathbf{u}}{M_n}$$

- široka uporaba rastava u dinamici konstrukcija
- određivanje rješenja za slobodno titranje, vanjsku pobudu i potres
- primjer: raspis vektora pomaka $\mathbf{u} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathrm{T}}$ dvoetažnog okvira
- poznajemo matricu masa i oblike titranja (slika, str. 307.):

$$\phi_1 = \begin{bmatrix} 1/2 & 1 \end{bmatrix}^{\mathrm{T}}, \qquad \phi_2 = \begin{bmatrix} -1 & 1 \end{bmatrix}^{\mathrm{T}}$$

• pripadni skalari (ovise o načinu normiranja ϕ_i !):

$$q_{1} = \frac{\begin{bmatrix} 1/2 & 1 \end{bmatrix} \begin{bmatrix} 2m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1/2 & 1 \end{bmatrix} \begin{bmatrix} 2m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}} = \frac{2m}{3/2m} = \frac{4/3}{3/2m}$$
$$q_{2} = \frac{\begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 2m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 & m \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 2m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}} = \frac{-m}{3m} = -\frac{1}{3}$$

• konačni raspis:
$$\mathbf{u} = q_1\phi_1 + q_2\phi_2 = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = 4/3 \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} - 1/3 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Rješenje problema slobodnog titranja bez prigušenja

treba riješiti (2921 < jednadžbu gibanja) uz zadane (2923 < početne uvjete)
primjer: (2922 < rješenje) posmičnog okvira (q_i, u_i) za u_i(0), (i = 1, 2) ((i = 1, 2))

- dio postupka: realni problem 298 vlastitih vrijednosti
- pretpostavka: riješen poznajemo ω_n i ϕ_n $(n = 1, \dots, N)$
- opće rješenje: superpozicija (zbroj) odziva za (2972 pojedini oblik,

$$\mathbf{u}(t) = \sum_{n=1}^{N} \mathbf{u}_n(t) = \sum_{n=1}^{N} \phi_n \underbrace{(A_n \cos \omega_n t + B_n \sin \omega_n t)}_{q_n}$$

- vrijedi princip superpozicije: problem linearan
- brzina slobodnog titranja (ϕ_n ne ovisi o vremenu):

$$\dot{\mathbf{u}}(t) = \sum_{n=1}^{N} \phi_n \omega_n (-A_n \sin \omega_n t + B_n \cos \omega_n t)$$

• za
$$t = 0$$
: $\mathbf{u}(0) = \sum_{n=1}^{N} \phi_n A_n$, $\dot{\mathbf{u}}(0) = \sum_{n=1}^{N} \phi_n \omega_n B_n$ (1)

• dva sustava od N jednadžbi po A_n i B_n [$\mathbf{u}(0)$ i $\dot{\mathbf{u}}(0)$ poznato]

• ne rješavaju se izravno: rabimo (10 < razvo) $\mathbf{u}(0)$ po ϕ_n (vrijedi i u t = 0)

$$\mathbf{u}(0) = \sum_{n=1}^{N} \phi_n q_n(0), \quad \text{derivacijom:} \quad \dot{\mathbf{u}}(0) = \sum_{n=1}^{N} \phi_n \dot{q}_n(0) \qquad \textcircled{2}$$

• 3112 • izraz za q_n vrijedi za bilo koji $t [\mathbf{u}(t)]$, pa i za $t = 0 [\mathbf{u}(0)]$:

$$q_n(0) = rac{oldsymbol{\phi}_n^{\mathrm{T}} \mathbf{mu}(0)}{M_n}, \quad ext{derivacijom:} \quad \dot{q}_n(0) = rac{oldsymbol{\phi}_n^{\mathrm{T}} \mathbf{m} \dot{\mathbf{u}}(0)}{M_n}$$

izrazi ① i ② za u i ù ekvivalentni: A_n = q_n(0) i B_n = q_n(0)/ω_n
uvrstimo u opće rješenje:

$$\mathbf{u}(t) = \sum_{n=1}^{N} \phi_n \left[q_n(0) \cos \omega_n t + \frac{\dot{q}_n(0)}{\omega_n} \sin \omega_n t \right]$$

• poznajemo ω_n i ϕ_n : odredimo $q_n(0)$, $\dot{q}_n(0)$ i pomak $\mathbf{u}(t)$

- rješenje zbog početne pobude $\mathbf{u}(0)$ i/ili $\dot{\mathbf{u}}(0)$: str. 292.
- ako je $\mathbf{u}(0) = \phi_n$ i $\dot{\mathbf{u}}(0) = \mathbf{0}$: $q_n(0) = 1$, ostalo 0 (str. 294. i 295.)

skraćeni zapis rješenja:

$$\mathbf{u}(t) = \sum_{n=1}^{N} \phi_n q_n(t),$$
 zapravo $311_1 \cdot poznati raspis$ vrijedi za svaki t

• vremenska promjena modalne koordinate nekog oblika titranja:

$$q_n(t) = q_n(0) \cos \omega_n t + \frac{\dot{q}_n(0)}{\omega_n} \sin \omega_n t$$
 (str. 54., uz $u \to q$)

poput slobodnog titranja sustava s jednim stupnjem slobode

Slobodno titranje s prigušenjem

• slobodno titranje ($\mathbf{p} = \mathbf{0}$) s prigušenjem ($\mathbf{c} \neq \mathbf{0}$):

 $\label{eq:mu} \textbf{m} \ddot{\textbf{u}} + \textbf{c} \dot{\textbf{u}} + \textbf{k} \textbf{u} = \textbf{0}, \quad \text{uz početne uvjete:} \quad \textbf{u} = \textbf{u}(0), \ \ \dot{\textbf{u}} = \dot{\textbf{u}}(0)$

• uvrstimo raspis $\mathbf{u} = \mathbf{\Phi} \mathbf{q}$ (problem vl. vr. pa i $\mathbf{\Phi}$ ne ovise o c):

$$\mathbf{m}\boldsymbol{\Phi}\ddot{\mathbf{q}} + \mathbf{c}\boldsymbol{\Phi}\dot{\mathbf{q}} + \mathbf{k}\boldsymbol{\Phi}\mathbf{q} = \mathbf{0}/\boldsymbol{\Phi}^{\mathrm{T}}, \quad \underbrace{\boldsymbol{\Phi}^{\mathrm{T}}\mathbf{m}\,\boldsymbol{\Phi}}_{\mathbf{M}}\ddot{\mathbf{q}} + \underbrace{\boldsymbol{\Phi}^{\mathrm{T}}\mathbf{c}\,\boldsymbol{\Phi}}_{\mathbf{C}}\dot{\mathbf{q}} + \underbrace{\boldsymbol{\Phi}^{\mathrm{T}}\mathbf{k}\,\boldsymbol{\Phi}}_{\mathbf{K}}\mathbf{q} = \mathbf{0}$$

odnosno:

$$\mathsf{M}\ddot{\mathsf{q}} + \mathsf{C}\dot{\mathsf{q}} + \mathsf{K}\mathsf{q} = \mathbf{0}$$

- matrice **M** i **K** zbog (3061 uvjeta ortogonalnosti) dijagonalne
- KVADRATNA matrica $\mathbf{C} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{c} \mathbf{\Phi}$: može i ne mora biti dijagonalna
- oblik matrice C: ovisi o razdiobi c unutar sustava
- C dijagonalna: N neovisnih jednadžbi po modalnim koordinatama
- sustav s KLASIČNIM prigušenjem: vrijedi klasična modalna analiza
- važno: oblici titranja isti kao za sustav bez prigušenja
- C nije dijagonalna: sustav s OPĆIM prigušenjem
- ne vrijedi klasična modalna analiza
- oblici titranja različiti u odnosu na sustav bez prigušenja

Sustav s općim oblikom prigušenja

• 2931 • primjer: kao za sustav bez prigušenja, uz $c_1 = c$ i $c_2 = 4c$

318

• od ranije: matrica $(252_3 \le masa)$, $(253 \le krutosti)$ i $(254 \le prigušenja)$ $\mathbf{m} = m \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{k} = k \begin{bmatrix} 3 & -1 \\ -1 & 1 \end{bmatrix}$, $\mathbf{c} = c \begin{bmatrix} 5 & -4 \\ -4 & 4 \end{bmatrix}$

• oblici titranja (za sustav bez prigušenja, str. 318. i 320.):

$$\phi_1 = \begin{bmatrix} 1/2 & 1 \end{bmatrix}^{\mathrm{T}}, \qquad \phi_2 = \begin{bmatrix} -1 & 1 \end{bmatrix}^{\mathrm{T}}$$

• odredimo M, C i K (str. 316.): dobivamo,

$$m\begin{bmatrix}1,5&0\\0&3,0\end{bmatrix}\begin{bmatrix}\ddot{q}_1\\\ddot{q}_2\end{bmatrix}+c\begin{bmatrix}1,25&3,50\\3,50&17,00\end{bmatrix}\begin{bmatrix}\dot{q}_1\\\dot{q}_2\end{bmatrix}+k\begin{bmatrix}0,75&0\\0&6,00\end{bmatrix}\begin{bmatrix}q_1\\q_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}$$

- primijetite: C nije dijagonalna matrica
- diferencijalne jednadžbe po $q_1(t)$ i $q_2(t)$ međusobno povezane
- rješavanje: izravnom analizom sustava isključivo numerički
- zadano: $c = \sqrt{km/200}$ i $\mathbf{u}(0)$ u obliku vlastitih vektora:

$$\mathbf{u}(0) = \begin{bmatrix} 1/2 & 1 \end{bmatrix}^{\mathrm{T}}, \text{ zatim } \mathbf{u}(0) = \begin{bmatrix} -1 & 1 \end{bmatrix}^{\mathrm{T}}$$

• rješenja: $q_{1}(t), q_{2}(t)$ i $\mathbf{u} = \begin{bmatrix} u_{1}(t) & u_{2}(t) \end{bmatrix}^{\mathrm{T}} = \sum_{r=1}^{2} \phi_{r} q_{r}(t),$

$$\overset{\text{edc ba}}{\overset{\text{formed}}}{\overset{\text{formed}}{\overset{formed}}}}}}}}}}}}}}$$

- svojstva rješenja:
 - **(**) $q_2 \neq 0$ u prvom (str. 318.) i $q_1 \neq 0$ u drugom primjeru (str. 320.)
 - 2 početni oblik pomaka nije sačuvan prilikom titranja
 - titranje nije jednostavno harmonijsko gibanje s prigušenjem (periodi titranja masa T_D nisu definirani)

Sustav s klasičnim oblikom prigušenja

- primjer: kao prethodni, ali $c_1 = 4c$ i $c_2 = 2c$, $\left(c = \sqrt{km/200}\right)$
- matrice m i k kao u prethodnom primjeru (str. 319.),

• a matrica **c** jest (str. 254.):
$$\mathbf{c} = c \begin{bmatrix} 6 & -2 \\ -2 & 2 \end{bmatrix}$$

• sustav jednadžbi po modalnim koordinatama (uz M, C i K):

$$m\begin{bmatrix}1,5 & 0\\0 & 3,0\end{bmatrix}\begin{bmatrix}\ddot{q}_1\\\ddot{q}_2\end{bmatrix} + c\begin{bmatrix}1,5 & 0\\0 & 12,0\end{bmatrix}\begin{bmatrix}\dot{q}_1\\\dot{q}_2\end{bmatrix} + k\begin{bmatrix}0,75 & 0\\0 & 6,00\end{bmatrix}\begin{bmatrix}q_1\\q_2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}_{321}$$

• i matrica **C** dijagonalna: jednadžbe po $q_1(t)$ i $q_2(t)$ neovisne

• simbolički zapis svih jednadžbi sustava $\mathbf{M}\ddot{\mathbf{q}} + \mathbf{C}\dot{\mathbf{q}} + \mathbf{K}\mathbf{q} = \mathbf{0}$:

$$M_n \ddot{q}_n + C_n \dot{q}_n + K_n q_n = 0 / : M_n, \quad \ddot{q}_n + 2\zeta_n \omega_n \dot{q}_n + \omega_n^2 q_n = 0, \quad n = 1, \dots, N$$

• skalari K_n i M_n : 3062 • članovi na dijagonali) i $C_n = \phi_n^{\mathrm{T}} \mathbf{c} \phi_n$

- oblik jednadžbi: kao za jedan st. sl. s prigušenjem ($u \rightarrow q_n$, str. 60.)
- MODALNI koeficijent relativnog prigušenja: ista analogija,

$$\zeta_n = rac{C_n}{2M_n \,\omega_n}, \qquad \left(ext{za jedan st. sl. (str. 60.):} \quad \zeta = rac{c}{2m \,\omega_n}
ight)$$

- postupak rješavanja: kao za jedan stupanj slobode
- za 1. jednadžbu: $M_1 = 1, 5m$, $C_1 = 1, 5c$, $K_1 = 0, 75k$

•
$$\omega_1 = \sqrt{K_1/M_1} = \sqrt{k/(2m)}, \ \zeta_1 = C_1/(2M_1\omega_1) = 0,05$$

- slično odredimo M_2 , C_2 , K_2 , ω_2 i ζ_2 za 2. jednadžbu
- pobuda $\mathbf{u}(0)$: u obliku ϕ_n kao u primjeru bez prigušenja
- rješenja (str. 322. i 324.): $q_1(t)$ i $q_2(t)$, $\mathbf{u} = \begin{bmatrix} u_1 & u_2 \end{bmatrix}^{\mathrm{T}} = \phi_n q_n$

- **0** nema doprinosa drugih oblika titranja: $q_r = 0$, r
 eq n
- ② sačuvan početni oblik pomaka: samo $q_n
 eq 0$ (kao bez prigušenja)
- ${f 0}$ posljedica: ϕ_n prirodni oblik titranja i za sustav s prigušenjem
- gibanje svake mase: kao za jedan st. sl. s prigušenjem

- amplitude opadaju zbog utjecaja prigušenja
- gibanje greda: jednostavna harmonijska gibanje s prigušenjem
- isti period gibanja svake mase: T_{1D} ili T_{2D} (vidjeti slike)

Rješenje problema slobodnog titranja s prigušenjem

- promatramo klasično prigušenje: ne utječe na oblike titranja
- vrijede ω_n i ϕ_n za sustav bez prigušenja
- $\bullet\,$ utjecaj ζ na
 $\omega_n:$ kao u slučaju jednog stupnja slobode
- podijelimo jednadžbu po q_n , $M_n\ddot{q}_n + C_n\dot{q}_n + K_nq_n = 0$, s M_n :

$$\ddot{q}_n + 2\zeta_n \omega_n \dot{q}_n + \omega_n^2 q_n = 0$$
 ($C_n/M_n = 2\zeta_n \omega_n$, $\omega_n = \sqrt{K_n/M_n}$, str. 60.)

- ullet kao u slučaju jednog stupnja slobode s prigušenjem $(q_n
 ightarrow u)$
- prema analogiji s rješenjem za jedan stupanj slobode (str. 63.):

$$q_n(t) = e^{-\zeta_n \omega_n t} \left[q_n(0) \cos \omega_{nD} t + \frac{\dot{q}_n(0) + \zeta_n \omega_n q_n(0)}{\omega_{nD}} \sin \omega_{nD} t \right]$$

• prema istoj analogiji vrijedi: $\omega_{nD} = \omega_n \sqrt{1-\zeta_n^2}$

^{316 •} ukupno rješenje: superpozicija odziva za pojedini oblik titranja,

$$\mathbf{u}(t) = \sum_{n=1}^{N} \phi_n e^{-\zeta_n \omega_n t} \left[q_n(0) \cos \omega_{nD} t + \frac{\dot{q_n}(0) + \zeta_n \omega_n q_n(0)}{\omega_{nD}} \sin \omega_{nD} t \right]$$

- riješene vl. vrijednosti: poznajemo ω_n i ϕ_n sustava bez prigušenja • ζ_n iz pokusa [ne iz $C_n/(2M_n\omega_n)$]: **c**, pa i $C_n = \phi_n^{\mathrm{T}} \mathbf{c} \phi_n$ nepoznati
- odredimo ω_{nD} i $q_n(0)$, $\dot{q}_n(0)$ zbog $\mathbf{u}(0)$ i/ili $\dot{\mathbf{u}}(0)$, (str. 315.):

$$q_n(0) = rac{\phi_n^{\mathrm{T}} \mathbf{mu}(0)}{M_n}, \quad ext{derivacijom:} \quad \dot{q}_n(0) = rac{\phi_n^{\mathrm{T}} \mathbf{mu}(0)}{M_n}$$

- odredimo pomak $\mathbf{u}(t)$: rješenje zbog $\mathbf{u}(0)$ i/ili $\dot{\mathbf{u}}(0)$
- prema obliku formule: isti utjecaj ζ_n kao u slučaju jednog st. sl.
- za $\zeta_n < 20\%$: mali utjecaj na prirodne frekvencije i periode (str. 66.)
- opadanje u_0 pri titranju nekim ϕ_n : veći ζ_n , brže opadanje (str. 67.) 🖉 🗗

- zakon opadanja: definiran $69 \cdot \log \delta_n$
- jedan način (73 < određivanja) ζ_n : slobodnim titranjem građevine
- pobuda: građevinu potegnemo užetom i pustimo
- problem: pobuditi titranje u samo jednom obliku
- ullet razlog: praktična realizacija $oldsymbol{u}(0)$ u obliku vlastitog vektora

- uočite: najlakše pobuditi temeljni oblik titranja
- čekamo dok (zbog ζ_n) ne iščeznu (mali) utjecaji viših oblika
- ostaje titranje samo temeljnim oblikom: iz δ_n odredimo \mathcal{T}_1 i ζ_1 (

- poznate 27 pojave) koje uzrokuju prigušenje u konstrukcijama
- teško se računa iz dimenzija konstrukcije i prigušenja u materijalu
- određuje se pokusom: u obliku koeficijenta relativnog prigušenja

Eksperimentalne vrijednosti prigušenja: praktični primjer

• primjer: deveteroetažna AB zgrada knjižnice Millikan – CALTECH

- $\bullet\,$ tlocrtne dimenzije: 21 na $23\,\mathrm{m}$
- visina: 44 m iznad razine tla, 48 m od razine temeljne ploče
- posljednja etaža: krovna konstrukcija s postrojenjem za klimatizaciju
- bočna stabilizacija u smjeru sjever jug: AB zidovi na krajevima zgrade, $d = 30 \,\mathrm{cm}$
- u smjeru istok zapad: AB zidovi stubišne i liftne jezgre, $d = 30 \,\mathrm{cm}$

- poznate 27 · pojave) koje uzrokuju prigušenje u konstrukcijama
- teško se računa iz dimenzija konstrukcije i prigušenja u materijalu
- određuje se pokusom: u obliku koeficijenta relativnog prigušenja

Eksperimentalne vrijednosti prigušenja: praktični primjer

• primjer: deveteroetažna AB zgrada knjižnice Millikan – CALTECH

- $\bullet\,$ tlocrtne dimenzije: 21 na 23 m
- visina: 44 m iznad razine tla, $48 \ m \ \text{od} \ razine \ temeljne \ ploče}$
- posljednja etaža: krovna konstrukcija s postrojenjem za klimatizaciju
- bočna stabilizacija u smjeru sjever jug: AB zidovi na krajevima zgrade, $d = 30 \,\mathrm{cm}$
- u smjeru istok zapad: AB zidovi stubišne i liftne jezgre, d = 30 cm

- krajnji zidovi s otvorima: predgotovljene AB zidne ploče (paneli)
- doprinose arhitektonskom učinku: ne smatraju se nosivima
- za male amplitude doprinose krutosti u smjeru istok zapad
- zgrada izvedena tijekom 1966. 1967. godine
- važan primjer: dinamička svojstva utvrđena pri raznim pobudama
- (132 < vibracijskim pobuđivačem:) prisilno harmonijsko titranje zgrade
- određena 138 frekvencijska funkcija odziva), period i relativno prigušenje
- period (frekvencija): $\omega_n = \omega$, jer je rezonancija ($\phi = 90^\circ$)
- relativno prigušenje: iz analize 131 područja rezonancije
- oblik titranja: mjerenjem horizontalnih pomaka po katnim pločama
- $\bullet\,$ temeljni period u smjeru I Z: $\mathcal{T}_{1}\approx0,66\,\mathrm{s}$ (sa slike, $\mathit{f}_{1}=1,49\,\mathrm{Hz})$
- porast amplituda rezonancije: povećanjem m_e i/ili e pobuđivača
- $\bullet\,$ područje amplituda rezonancije krova: $3\cdot 10^{-3}\,\mathrm{g}$ $17\cdot 10^{-3}\,\mathrm{g}$
- f_1 raste ($T_1 = 1/f_1$ pada) 3% kroz područje amplituda

• pripadno prigušenje ζ_1 : od 0,7 do 1,5%, raste s amplitudom

- $\bullet\,$ smjer S J: ${\cal T}_1 \approx 0,51\,{\rm s},$ pada 4% kroz područje amplituda
- $\bullet\,$ područje amplituda rezonancije krova: $5\cdot 10^{-3}\,\mathrm{g}$ $20\cdot 10^{-3}\,\mathrm{g}$
- prigušenje ζ_1 : od 1,2 do 1,8%, raste s amplitudom

• teorijski: jedna frekvencijska funkcija, jedan period i oblik titranja

- teško pobuditi zgradu na čisto titranje višim oblikom (str. 327.)
- na temeljnoj i krovnoj ploči postavljeni akcelerometri
- zabilježena ubrzanja zgrade za nekoliko potresa (vrlo rijetko)
- potres SAN FERNANDO: udaljenost 31 km, M = 6, 4
- potres Lytle Creek: udaljenost 64 km, M = 5, 4
- oštećenja nosivih elemenata: $M \ge 5 ~(\ddot{u}_g(t) \ge 0, 09 \,\mathrm{g})$

- $\bullet\,$ zapis S J: vršno ubrzanje temeljne ploče $0,202\,{\rm g}$
- $\bullet\,$ povećano na vršnu vrijednost od $0,312\,\mathrm{g}$ na krovnoj ploči

• zapis I – Z: temeljna ploča $0,185\,\mathrm{g}$, krovna ploča $0,348\,\mathrm{g}$

• mjereno ubrzanje krovne ploče: 276 \cdot ukupno ubrzanje $\ddot{u}^t(t)$

• ukupni pomak krovne ploče $u^t(t)$: dvostruka integracija $\ddot{u}^t(t)$

- mjereno ubrzanje temeljne ploče: jednako ubrzanju tla $\ddot{u}_g(t)$
- razlog: relativno ubrzanje u razini temelja jednako nuli $\begin{bmatrix} \ddot{u}(t) = 0 \end{bmatrix}$
- pomak tla $u_g(t)$: dvostruka integracija $\ddot{u}_g(t)$
- relativni pomak krovne ploče u(t): $u^t(t) u_g(t)$

- konstrukcija je fleksibilna (nije apsolutno kruta)
- ${\, \bullet \, }$ veće ubrzanje krovne nego temeljne ploče: $A>\ddot{u}_{g0}$
- različite funkcije ubrzanja ploča u vremenu: $A(t)
 eq \ddot{u}_g(t)$
- $\bullet\,$ smjer S J: relativni pomak 2,69 cm, period oko 0,6 s
- $\bullet\,$ smjer I Z: relativni pomak 6,88 ${\rm cm}$, period oko $1,0\,{\rm s}$
- smjer S J krući (zidovi): manji pomak i period titranja

Periodi i koeficijenti relativnog prigušenja knjižnice Millikan					
Izvor	Ubrzanje	Temeljni oblik titranja		2. oblik titranja	
pobude	krova [g]	T_1 [s]	ζ_1 [%]	$T_2[s]$	ζ ₂ [%]
Smjer sjever – jug					
Pobuđivač	$\begin{array}{c} 5 \cdot 10^{-3} \text{ do} \\ 20 \cdot 10^{-3} \end{array}$	0,51 - 0,53	1,2 - 1,8	nije mjereno	
Potres Lytle Creek	0,05	0,52	2,9	0,12	1,0
Potres San Fernando	0,312	0,62	6,4	0,13	4,7
Smjer istok – zapad					
Pobuđivač	$3 \cdot 10^{-3}$ do $17 \cdot 10^{-3}$	0,66 - 0,68	0,7 - 1,5	nije pouzdano	
Potres <i>Lytle Creek</i>	0,035	0,71	2,2	0,18	3,6
Potres San Fernando	0,348	0,98	7,0	0,20	5,9

- $\bullet\,$ potres Lytle Creek: slab, $\ddot{u}_{g0}=0,02\,\mathrm{g},$ na krovu, $\ddot{u}_0=0,05\,\mathrm{g}$
- $\bullet\,$ nešto jači od najveće pobude uređajem, na krovu, $\ddot{u}_0=0,02\,{
 m g}$
- $\bullet\,$ temeljni periodi: $0,52\,\mathrm{s}$ i $0,71\,\mathrm{s},$ malo veći od utvrđenih pokusom
- koeficijenti prigušenja: 2,9% i 2,2%, veći od utvrđenih pokusom
- potres San Fernando: jak, $\ddot{u}_{g0}=0,202\,\mathrm{g}$, na krovu, $\ddot{u}_0=0,348\,\mathrm{g}$
- značajno povećanje perioda i prigušenja u odnosu na pokus
- $\bullet\,$ smjer S J: porast ${\it T}_1$ sa $0,51\,{\rm s}$ na $0,62\,{\rm s}$ i prigušenja na 6,4%
- $\bullet\,$ smjer I Z: porast $\,{\cal T}_1$ sa $0,66\,{\rm s}$ na $0,98\,{\rm s}$ i prigušenja na 7%
- uočimo: porast perioda pri većim amplitudama gibanja
- razlog: smanjena krutost k zgrade ($T = 2\pi \sqrt{m/k}$)
- primarni uzrok: NELINEARNO ELASTIČNO ponašanje (ne pukotine!)
- dokaz: nosiva konstrukcija bez vidljivih oštećenja
- pucanje polica i otpadanje žbuke pri potresu SAN FERNANDO
- mjerenje perioda nakon potresa: kraći nego pri potresu

• zaključak: veliki povratak k, male plastične deformacije

- krutost nije konstanta
- opada s porastom amplituda
- ali jest idealno povratna
- povratak po istoj krivulji
- nema petlje histereze
- materijal BEZ MEMORIJE
- potpuni ili djelomični povratak k: ovisi o iznosu amplituda
- porast T_D nije mali za $\zeta < 20\%$ (nije $T_D \approx T_n$)
- ne vrijedi linearni model i odnos: $T_D = T_n/\sqrt{1-\zeta^2}$
- razlozi: NEVISKOZNO prigušenje i nelinearno elastični odziv
- \bullet veće amplitude, izraženiji uzroci prigušenja (str. 28.): raste i ζ
- SAN FERNANDO vrijedan: ζ određen za odziv pri granici tečenja
- važno: ne sadrži učinke plastičnog popuštanja konstrukcije

Preporučene vrijednosti koeficijenta relativnog prigušenja

- za postojeće zgrade: skupa i spora primjena opisanog postupka
- ullet za buduće zgrade: procjena ζ na temelju pokusa na sličnim zgradama
- postoji mnogo podataka: nisu svi prikadni za seizmički proračun
- slabe pobude (pobuđivač ili slabi potres): premali iznosi prigušenja
- snažne pobude (potres): ζ sadrži i trošenje energije zbog tečenja
- najkorisniji podatci: iz jakih trešnji pri granici tečenja
- ulletutjecaj tečenja uzima se posebno: radnim dijagramom f_S-u
- $\bullet\,$ nemamo dovoljno ζ za različite konstrukcije i materijale
- razlog: malo postavljenih uređaja i prikladnih potresa
- rabimo postojeće iznose i procjene stručnjaka (tablica)
- od nedavno: nearmirano ziđe 3%, armirano ziđe 7%
- mnogi propisi ne razlikuju materijale: za spektre uvijek 5%
Prigušenje u građevinskim konstrukcijama

Preporučeni iznosi koeficijenta relativnog prigušenja			
Razina naprezanja	Vrsta i stanje konstrukcije	ζ [%]	
radno naprezanje: ne više od polovine granice tečenja (za posebne konstrukcije)	vareni čelik, prednapeti beton, dobro armirani beton sa sitnim pukotinama	2 – 3	
	armirani beton sa značajnim pukotinama	3 – 5	
	vijčani i/ili zakovani spojevi u čeliku, vijčani ili čavlani spojevi u drvetu	5 – 7	
malo ispod ili na granici tečenja (za uobičajene konstrukcije)	vareni čelik, prednapeti beton (bez potpunog gubitka prednapona)	5 – 7	
	prednapeti beton s potpunim gubitkom prednapona, armirani beton	7 – 10	
	vijčani i/ili zakovani spojevi u čeliku, vijčani spojevi u drvetu	10 – 15	
	čavlani spojevi u drvetu	15 – 20	

treba riješiti sustav bez prigušenja uz zadanu pobudu:

 $\mathbf{m}\ddot{\mathbf{u}} + \mathbf{k}\mathbf{u} = \mathbf{p}(t)$

Harmonijska pobuda

- pobuda oblika $\mathbf{p}(t) = \mathbf{p}_0 \sin \omega t$, općenito: $\mathbf{p}(t) = \mathbf{p}_0 \sin(\omega t \phi)$
- amplitude pobude: $\mathbf{p}_0 = \begin{bmatrix} p_{1,0} & \cdots & p_{N,0} \end{bmatrix}^{\mathrm{T}}$
- logično pretpostaviti rješenje istog oblika: $\mathbf{u}(t) = \mathbf{u}_0 \sin \omega t$
- amplitude titranja (pomaka): $\mathbf{u}_0 = \begin{bmatrix} u_{1,0} & \cdots & u_{N,0} \end{bmatrix}^{\mathrm{T}}$

- ubrzanje sustava: $\ddot{\mathbf{u}}(t) = -\omega^2 \mathbf{u}_0 \sin \omega t$
- uvrstimo u i ü u polaznu jednadžbu (svi članovi sadrže sin ωt):

$$(\mathbf{k} - \omega^2 \mathbf{m})\mathbf{u}_0 = \mathbf{p}_0$$
 ili $\mathbf{\overline{k}}\mathbf{u}_0 = \mathbf{p}_0$ (uz: $\mathbf{\overline{k}} = \underbrace{\mathbf{k} - \omega^2 \mathbf{m}}_{\text{poznato}}$)

- $\bullet\,$ statički problem prema metodi pomaka: odredimo $\dot{f u}_0=\overline{f k}^{(-1)}{f p}_0$
- jednim od dva pristupa (str. 41.) odredimo unutarnje sile
- primjerice, ekvivalentna bočna sila: $\mathbf{f}_{\mathcal{S}} = \mathbf{k}\mathbf{u}_0$, (pazite, ne $\overline{\mathbf{k}}$)
- rješenja za opterećenje f_5: amplitude odziva ${\sf M}_0,\,{\sf T}_0,\,{\sigma}_0,\dots$
- vremenska promjena: isto sin ωt , primjerice $\mathbf{M}(t) = \mathbf{M}_0 \sin \omega t$
- nije potreban problem vlastitih vrijednosti: ω_n i ϕ_n
- rješenje: prisilni (ustaljeni) dio (analogija s jednim st. sl., str. 92.)
- prolazni dio najčešće nije važan: brzo iščezava s prigušenjem
- podsjetite se: ukupno rješenje može biti mjerodavno (str. 105.)
- opći pristup određivanju ukupnog rješenja: modalna analiza

Modalna analiza

- opći pristup linearnom modelu za proizvoljnu pobudu $\mathbf{p}(t)$
- rabimo (1 raspis) vektora pomaka po (2 rulastitim vektorima) (str. 311.):

$$\mathbf{u}(t) = \sum_{r=1}^{N} \phi_r q_r(t) = \mathbf{\Phi} \mathbf{q}(t)$$

• uvrstimo u jednadžbu gibanja [uz: $\ddot{\mathsf{u}}(t) = \sum_{r=1}^{n} \phi_r \ddot{q}_r(t)$]:

$$\sum_{r=1}^{N} \mathbf{m} \, \phi_r \ddot{q}_r(t) + \sum_{r=1}^{N} \mathbf{k} \, \phi_r q_r(t) = \mathbf{p}(t) \, \big/ \cdot \, \phi_n^{\mathrm{T}}$$

$$\sum_{r=1}^{N} \phi_n^{\mathrm{T}} \mathbf{m} \, \phi_r \ddot{q}_r(t) + \sum_{r=1}^{N} \phi_n^{\mathrm{T}} \mathbf{k} \, \phi_r q_r(t) = \phi_n^{\mathrm{T}} \mathbf{p}(t)$$

• zbog $303 \cdot uvjeta ortogonalnosti:$ ostaju samo članovi za r = n,

$$\left(\phi_n^{\mathrm{T}}\mathbf{m}\,\phi_n\right)\ddot{q}_n(t) + \left(\phi_n^{\mathrm{T}}\mathbf{k}\,\phi_n\right)q_n(t) = \phi_n^{\mathrm{T}}\mathbf{p}(t)$$

• od ranije: $M_n = \phi_n^{\mathrm{T}} \mathbf{m} \, \phi_n$, $K_n = \phi_n^{\mathrm{T}} \mathbf{k} \, \phi_n$ i • dodatno $P_n(t) = \phi_n^{\mathrm{T}} \mathbf{p}(t)$

$$M_n\ddot{q}_n(t) + K_nq_n(t) = P_n(t), \qquad n = 1, \dots, N$$

- jednadžba gibanja sustava s jednim stupnjem slobode po $q_n(t)$
- skalari M_n , K_n i $P_n(t)$: masa, krutost i opterećenje sustava
- nazivi: POOPĆENA masa, krutost i opterećenje za n-ti oblik titranja

- prostorna promjena pomaka: zgrada titra u obliku ϕ_n
- vremenska promjena pomaka:
 pomaci q_n(t) jednog st. sl.

- ullet poopćene vrijednosti: konstante za odabrani oblik titranja ϕ_n
- poznajemo ϕ_n : odredimo M_n , K_n , $P_n(t)$, jednadžbu gibanja i $q_n(t)$
- primijetimo: za n-tu jednadžbu ne trebamo ostale oblike titranja
- podijelimo jednadžbu s M_n [uz: $\omega_n^2 = K_n/M_n$],

$$\ddot{q}_n(t) + \omega_n^2 q_n(t) = \frac{P_n(t)}{M_n}, \qquad n = 1, \dots, N$$

- važno: jedna jednadžba jedna nepoznanica $q_n(t)$
- ullet postoji N jednadžbi: po jedna za svaki oblik titranja ϕ_n
- bit $343_1 \cdot raspisa$ $\mathbf{u}(t)$: transformacija,

N međusobno ovisnih jednadžbi po pomacima $u_j(t)$, $(j = 1, \dots, N)$

N NEOVISNIH jednadžbi po modalnim koordinatama $q_j(t)$, (j = 1, ..., N)

• matrični zapis svih N (neovisnih!) jednadžbi:

 $\mathbf{M}\ddot{\mathbf{q}} + \mathbf{K}\mathbf{q} = \mathbf{P}(t)$

• dijagonalne matrice M i K poznate:

$$\mathbf{M} = \begin{bmatrix} M_{1} & 0 & \cdots & 0 \\ 0 & M_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & M_{n} \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} K_{1} & 0 & \cdots & 0 \\ 0 & K_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & K_{n} \end{bmatrix}$$
$$\mathbf{q} = \begin{bmatrix} q_{1} & q_{1} & \cdots & q_{N} \end{bmatrix}^{\mathrm{T}}, \quad \mathbf{P}(t) = \begin{bmatrix} P_{1} & P_{2} & \cdots & P_{N} \end{bmatrix}^{\mathrm{T}}$$

Modalna analiza za sustav s prigušenjem

• treba riješiti sustav s prigušenjem uz zadanu pobudu:

$$\mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = \mathbf{p}(t)$$

• uvrstimo raspis
$$\mathbf{u}(t) = \sum_{r=1}^{N} \phi_r q_r(t)$$
 u jednadžbu gibanja:

$$\sum_{r=1}^{N} \mathbf{m} \, \phi_r \ddot{q}_r(t) + \sum_{r=1}^{N} \mathbf{c} \, \phi_r \dot{q}_r(t) + \sum_{r=1}^{N} \mathbf{k} \, \phi_r q_r(t) = \mathbf{p}(t) \, \big/ \cdot \phi_n^{\mathrm{T}}$$

$$\sum_{r=1}^{N} \phi_n^{\mathrm{T}} \mathbf{m} \, \phi_r \ddot{q}_r(t) + \sum_{r=1}^{N} \phi_n^{\mathrm{T}} \mathbf{c} \, \phi_r \dot{q}_r(t) + \sum_{r=1}^{N} \phi_n^{\mathrm{T}} \mathbf{k} \, \phi_r q_r(t) = \phi_n^{\mathrm{T}} \mathbf{p}(t)$$

• uz ranije uvedene izraze za M_n , K_n i $P_n(t)$ dobivamo:

$$M_n \ddot{q}_n(t) + \sum_{r=1}^N C_{nr} \dot{q}_r(t) + K_n q_n(t) = P_n(t), \qquad n = 1, \dots, N$$

• općenito prigušenje: $C_{nr} = \phi_n^{\mathrm{T}} \mathbf{c} \, \phi_r \neq 0$, za $n \neq r$

• matrični zapis sustava [M, K, q i P(t) poznati od ranije]:

 $\mathbf{M}\ddot{\mathbf{q}} + \mathbf{C}\dot{\mathbf{q}} + \mathbf{K}\mathbf{q} = \mathbf{P}(t)$

- matrica **C** nije dijagonalna ($C_{nr} \neq 0$)
- svaka jednadžba sadrži više brzina $\dot{q}_r(t)$: srednji član jest suma
- jednadžbe nisu neovisne: međusobno povezane brzinama
- klasično prigušenje: $C_{nr} = 0$ za $n \neq r$, **C** dijagonalna ($C_n = \phi_n^{\mathrm{T}} \mathbf{c} \phi_n$)
- od sume preostaje jedan član C_n : nastaje niz neovisnih jednadžbi,

$$M_n \ddot{q}_n(t) + C_n \dot{q}_n(t) + K_n q_n(t) = P_n(t), \qquad n = 1, \dots, N$$

• • dijeljenjem s
$$M_n$$
 uz $(C_n/M_n = 2\zeta_n\omega_n, \omega_n = \sqrt{K_n/M_n},$ str. 60.)

$$\ddot{q}_n(t) + 2\zeta_n \omega_n \dot{q}_n(t) + \omega_n^2 q_n(t) = \frac{P_n(t)}{M_n}, \qquad n = 1, \dots, N$$

- gibanje sustava s jednim stupnjem slobode $q_n(t)$ uz ζ_n
- ζ_n koeficijent prigušenja za titranje u *n*-tom obliku
- ne određuje se iz $\zeta_n = C_n/(2M_n \omega_n)$ nego pokusom
- razlog: složene pojave, ne možemo $_{\rm IZRAČUNATI}$ matricu **c** (pa ni C_n)
- skalari M_n , C_n , K_n i $P_n(t)$: ovise o jednom obliku titranja ϕ_n
- ϕ_n određuje oblik gibanja (pomaka) zgrade
- svakoj jednadžbi pripada jedan takav oblik
- vremenska promjena gibanja (pomaka): određena rješenjem $q_n(t)$
- ISTA promjena za sve komponente ϕ_{jn} jednog oblika titranja ϕ_n

Proračun pomaka

- za zadano $\mathbf{p}(t)$ treba riješiti modalnu jednadžbu po $q_n(t)$
- oblik svake jednadžbe: kao za jedan stupanj slobode
- postupci rješavanja: analitički ili numerički
- pomak (odziv) zbog gibanja u obliku ϕ_n : $\mathbf{u}_n(t) = \phi_n q_n(t)$
- ukupni pomak: superpozicija modalnih pomaka $\mathbf{u}_n(t)$,

$$\mathbf{u}(t) = \sum_{n=1}^{N} \mathbf{u}_n(t) = \sum_{n=1}^{N} \phi_n q_n(t)$$

- postupak poznat kao klasična modalna analiza
- drugi naziv: metoda klasične modalne superpozicije
- razlog: neovisni pomaci združeni u ukupni odziv
- puni naziv: metoda klasične superpozicije modalnih pomaka
- skraćeni (i uvriježeni) naziv: MODALNA ANALIZA

- vrijedi za klasično prigušenje i linearne sustave
- razlozi: rabimo neovisne jednadžbe i princip superpozicije (zbroj)

Proračun unutarnjih sila

- iz dinamičkog proračuna znamo $\mathbf{u}_n(t)$: treba odrediti r(t)
- vremenska promjena unutarnje sile: $r(t) = M(t), T(t), \dots$
- položaj: bilo gdje na konstrukciji (najčešće mjesta ekstrema)
- proračun r(t): iz pomaka čvorova ili ekvivalentnih statičkih sila
- uobičajeno odrediti doprinos svakog oblika titranja ukupnom r(t)
- prvi način: primjenom krutosti elementa iz $\mathbf{u}_n(t)$ odredimo silu $r_n(t)$
- ukupne sile: zbroj sila $r_n(t)$ od doprinosa modalnih pomaka,

$$r(t) = \sum_{n=1}^{N} r_n(t)$$

• drugi način: statičkom analizom za ekvivalentno opterećenje,¹³

$$\mathbf{f}_n(t) = \mathbf{k}\mathbf{u}_n(t) = \mathbf{k}\phi_n q_n(t) = \omega_n^2 \mathbf{m}\phi_n q_n(t), \quad (\text{uz: } \mathbf{k}\phi_n = \omega_n^2 \mathbf{m}\phi_n)$$

- modalne pomake $\mathbf{u}_n(t)$ uzrokuje opterećenje $\mathbf{f}_n(t)$
- sjetite se neovisnih podmodela: prvi podmodel (str. 257.)
- statičkim proračunom za $\mathbf{f}_n(t)$ dobivamo unutarnju silu $r_n(t)$
- ukupne sile: ista formula zbroj $r_n(t)$ od svakog opterećenja
- opisani postupak sličan i za potresno opterećenje
- jedina razlika: desna strana nije $\mathbf{p}(t)$, nego $\mathbf{p}_{\mathrm{eff}}(t)$
- prema tome, polazna jednadžba jest:

$$m\ddot{u} + c\dot{u} + ku = p_{eff}(t)$$

• efektivna sila potresa: $\mathbf{p}_{\mathrm{eff}}(t) = -\mathbf{m}\ell\ddot{u}_g(t)$

 $^{^{13}}$ ne pišemo \mathbf{f}_{Sn} , izostavljamo indeks S

Sažetak modalne analize

Postupak proračuna sustava opterećenog vanjskom pobudom $\mathbf{p}(t)$:

utvrdimo svojstva dinamičkog sustava:

a) odredimo matricu masa **m** i krutosti **k**

- b) procijenimo koeficijent relativnog prigušenja ζ_n
- izračunamo prirodne frekvencije ω_n i oblike titranja ϕ_n (treba riješiti problem vlastitih vrijednosti $\mathbf{k}\phi_n = \omega_n^2 \mathbf{m}\phi_n$)

3 za svaki oblik titranja treba:

- a) postaviti jednadžbu gibanja i izračunati $q_n(t)$ [riješiti $\ddot{q}_n(t) + 2\zeta_n \omega_n \dot{q}_n(t) + \omega_n^2 q_n(t) = P_n(t)/M_n$]
- **b)** izračunati modalne pomake $\mathbf{u}_n(t) = \phi_n q_n(t)$
- c) jednim od dva načina odrediti $r_n(t)$ zbog $\mathbf{u}_n(t)$

Strojimo doprinos svih oblika titranja u ukupne pomake i sile $\begin{bmatrix} \mathbf{u}(t) = \sum \mathbf{u}_n(t) & i \quad r(t) = \sum r_n(t) \end{bmatrix}$

Jednadžbe gibanja

- promatramo translacijsku pobudu zapisom ubrzanja tla $\ddot{u}_g(t)$
- tlo apsolutno kruto: istodobna pobuda svih ležajeva istim zapisom
- treba riješiti sustav jednadžbi: $m\ddot{u} + c\dot{u} + ku = p_{eff}(t)$

$$ullet$$
 279 4 efektivna sila potresa: $oldsymbol{p}_{ ext{eff}} = -oldsymbol{m} \ell \ddot{u}_g(t)$

- matrice \mathbf{m} , \mathbf{k} i utjecajni vektor ℓ određujemo kao i ranije
- matrica prigušenja **c** nije potrebna
- dovoljan modalni koeficijent relativnog prigušenja ζ_n (pokusi)

Raspis pomaka i opterećenja po vlastitim vektorima

• vrijedi modalna analiza: rabimo superpoziciju 3432 < modalnih doprinosa

$$\mathbf{u}(t) = \sum_{n=1}^{N} \mathbf{u}_n(t) = \sum_{n=1}^{N} \phi_n q_n(t)$$

• i uvodimo zapis: $\mathbf{p}_{\mathrm{eff}}(t) = -\mathbf{s}\ddot{u}_g(t)$, (očito je $\mathbf{s} = \mathbf{m}\,\ell)$

- vektor prostorne razdiobe opterećenja s (ne ovisi o vremenu)
- označava prostornu razdiobu $\mathbf{p}_{ ext{eff}}(t)$
- radi se o prostornoj razdiobi mase (određenoj sa ℓ)
- skalarna funkcija $\ddot{u}_g(t)$ (ne ovisi o prostornim koordinatama)
- označava promjenu $\mathbf{p}_{ ext{eff}}(t)$ u vremenu
- radi se o vremenskom tijeku potresa

- vektor $\mathbf{m}\phi_n$: prostorna razdioba 307 · sila inercije $\left[(\mathbf{f}_I)_n = -\mathbf{m}\phi_n\ddot{q}_n(t)\right]$
- indeks n: pri titranju n-tim oblikom
- suma: rastav prostorne razdiobe opterećenja (* po silama inercije
- skalar Γ_n: dio toga opterećenja u smjeru n-te sile inercije,

$$\mathbf{m}\,\boldsymbol{\ell} = \sum_{n=1}^{N} \Gamma_n \mathbf{m}\boldsymbol{\phi}_n / \cdot \boldsymbol{\phi}_r^{\mathrm{T}}, \quad \underbrace{\boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{m}\,\boldsymbol{\ell}}_{L_n} = \Gamma_n \underbrace{\boldsymbol{\phi}_n^{\mathrm{T}} \mathbf{m}\boldsymbol{\phi}_n}_{M_n}, \quad \Gamma_n = \frac{L_n}{M_n}$$

- primijetite: zbog ortogonalnosti preostaje samo član za r = n
- ovise o obliku $(\mathbf{v}, \mathbf{v}_{lastitog}, \mathbf{v}_{ktora})$ $L_n = \phi_n^{\mathrm{T}} \mathbf{m} \ell$, $M_n = \phi_n^{\mathrm{T}} \mathbf{m} \phi_n$, $\mathbf{s}_n = \Gamma_n \mathbf{m} \phi_n$
- lacksim \mathbf{s}_n : doprinos n–tog oblika titranja ukupnom opterećenju $\mathbf{m}\,\ell$ 💷 🗗

- ne ovisi o (309 < normiranju) oblika titranja: br. i naz. sadrže ϕ_n^{T} i ϕ_n
- normiranje: ϕ_n i $a \phi_n$ isto, skalar a^2 pokratimo (raspišite $\mathbf{s}_n = \Gamma_n \mathbf{m} \phi_n$)
- primjer (poznajemo matricu masa i oblike titranja):

raspis
$$\mathbf{m} \, \ell = m \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = m \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 dvoetažnog okvira

• oblici titranja: $\phi_1 = \begin{bmatrix} 1/2 & 1 \end{bmatrix}^{\mathrm{T}}$ i $\phi_2 = \begin{bmatrix} -1 & 1 \end{bmatrix}^{\mathrm{T}}$

$$\Gamma_{1} = \frac{\phi_{1}^{\mathrm{T}} \mathbf{m} \ell}{\phi_{1}^{\mathrm{T}} \mathbf{m} \phi_{1}} = \frac{\begin{bmatrix} 1/2 & 1 \end{bmatrix} \begin{bmatrix} 2m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1/2 & 1 \end{bmatrix} \begin{bmatrix} 2m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}} = \frac{4}{3}, \ \Gamma_{2} = \frac{\phi_{2}^{\mathrm{T}} \mathbf{m} \ell}{\phi_{2}^{\mathrm{T}} \mathbf{m} \phi_{2}} = -\frac{1}{3}$$
$$\mathbf{s}_{1} = \Gamma_{1} \mathbf{m} \phi_{1} = \frac{4}{3} m \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} = \frac{4}{3} m \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \mathbf{s}_{2} = \Gamma_{2} \mathbf{m} \phi_{2} = -\frac{1}{3} m \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

 $u_g = 1$ $u_g = 1$ $\mathbf{m}\ell = \mathbf{m}\mathbf{1}$ $\mathbf{s}_1(1. \text{ oblik titranja})$ $\mathbf{s}_2(2. \text{ oblik titranja})$

Modalne jednadžbe

) $(\mathbf{344} \prec \mathsf{vrijedi})$ ista jednadžba ali $\mathbf{p}(t) = \mathbf{p}_{\mathrm{eff}}(t)$ jer djeluje potres:

$$P_n(t) = \phi_n^{\mathrm{T}} \mathbf{p}(t) = \phi_n^{\mathrm{T}} \mathbf{p}_{\mathrm{eff}}(t) = -\phi_n^{\mathrm{T}} \underbrace{\mathbf{m} \, \ell \ddot{u}_g(t)}_{\mathbf{p}_{\mathrm{eff}}(t)} = -L_n \ddot{u}_g(t)$$

• desna strana $(348 \cdot \text{modalne jednadžbe:} P_n(t)/M_n = -L_n/M_n \ddot{u}_g(t)$

• modalna jednadžba (uz $L_n/M_n = \Gamma_n$, str. 356.):

$$\ddot{q}_n + 2\zeta_n \omega_n \dot{q}_n + \omega_n^2 q_n = -\Gamma_n \ddot{u}_g(t), \qquad n = 1, \dots, N$$

• usporedimo s 163 · jednadžbom gibanja) za jedan stupanj slobode:

$$\ddot{D}_n + 2\zeta_n \omega_n \dot{D}_n + \omega_n^2 D_n = -\ddot{u}_g(t)$$

- smjena $u = D_n$: naglašava titranje n-tim oblikom
- ne $u = u_n$: ne radi se o modalnom pomaku nego o mod. koordinati
- pomnožimo jednadžbu sa Γ_n i usporedimo je s prethodnom:

$$\underbrace{\Gamma_n \ddot{D}_n}_{\ddot{q}_n} + 2\zeta_n \omega_n \underbrace{\Gamma_n \dot{D}_n}_{\dot{q}_n} + \omega_n^2 \underbrace{\Gamma_n D_n}_{q_n} = -\Gamma_n \ddot{u}_g(t)$$

- iste desne pa i lijeve strane jednadžbi: $q_n(t) = \Gamma_n D_n(t)$
- pobuda $\ddot{u}_g(t)$ definirana numerički (niz točaka spojenih pravcima)
- posljedica: 164 numerički pristup jednadžbi po $D_n(t)$, nakon toga:

- uz ϕ_n (riješene vl. vr.), **m** i ℓ : izračunamo $\Gamma_n = L_n/M_n$ i $q_n(t)$
- drugi prikaz Γ_n : dio utjecajnog vektora u smjeru *n*-tog oblika titranja

$$\mathbf{m}\,\boldsymbol{\ell} = \sum_{n=1}^{N} \Gamma_n \mathbf{m}\phi_n / \cdot \mathbf{m}^{-1} \Rightarrow \boldsymbol{\ell} = \sum_{n=1}^{N} \Gamma_n \phi_n \qquad \boldsymbol{\phi}_1 \qquad \boldsymbol{\phi}_2 \qquad \boldsymbol{\ell}$$

- česti naziv za Γ_n : KOEFICIJENT MODALNOG DOPRINOSA (učešća, udjela)
- ullet mjera doprinosa oblika titranja statičkom odzivu (za $u_g=1)$
- netočno: koeficijent ovisi o načinu normiranja oblika titranja
- nije neovisna mjera doprinosa nekom odzivu (pomaku, momentu,...)
- razlog: L_n sadrži ϕ_n^{T} , a M_n još i ϕ_n (u L_n/M_n ostaje jedan a)

Modalni odzivi

• doprinos n-tog oblika titranja vektoru pomaka $\mathbf{u}(t)$:

$$\mathbf{u}_n(t) = \phi_n q_n(t) = \Gamma_n \phi_n D_n(t), \qquad (q_n(t), \text{ str. 359.})$$

- poznato $\mathbf{u}_n(t)$: (411 dva pristupa) proračunu unutarnjih sila
- ekvivalentne statičke sile: $\mathbf{f}_n(t) = \mathbf{k}\mathbf{u}_n(t) = \Gamma_n \mathbf{k}\phi_n D_n(t)$
- bit proračuna seizmičkih sila prema većini propisa
- u $\mathbf{f}_n(t)$ uvrstimo problem vlastitih vrijednosti $\mathbf{k}\phi_n = \omega_n^2 \mathbf{m}\phi_n$
- uz: $356_3 \cdot clan$ \mathbf{s}_n i $166 \cdot pseudoubrzanje$ A(t) dobivamo:

$$\mathbf{f}_n(t) = \underbrace{\Gamma_n \mathbf{m} \phi_n}_{\mathbf{s}_n} \omega_n^2 D_n(t) = \mathbf{s}_n \underbrace{\omega_n^2 D_n(t)}_{A_n(t)} = \mathbf{s}_n A_n(t)$$

- ekvivalentne statičke sile produkt dva člana:
 - \mathbf{s}_n : doprinosa *n*-tog oblika titranja prostornoj razdiobi $\mathbf{m}\ell$ pobude $\mathbf{p}_{\text{eff}}(t)$
 - $A_n(t)$: pseudoubrzanja sustava pri pobudi $\ddot{u}_g(t)$ i titranju n-tim oblikom (problem s jednim stupnjem slobode)
- proračun doprinosa $r_n(t)$ $n-\log$ oblika titranja ukupnom odzivu r(t)
- statički proračun konstrukcije opterećene silama $\mathbf{f}_n(t)$
- primijetimo: $\mathbf{f}_n(t)$ umnožak vektora \mathbf{s}_n i skalarne funkcije $A_n(t)$

- linearni model: vrijedi princip superpozicije
- napravimo statički proračun za opterećenje **s**_n
- rezultat r_n^{st} (M_n^{st} , T_n^{st} ,...u nekom presjeku) množimo s $A_n(t)$:

$$r_n(t) = r_n^{\rm st} A_n(t)$$

Ukupni odziv

• ukupni pomaci: superpozicija modalnih doprinosa $\mathbf{u}_n(t)$ (str. 360.),

$$\mathbf{u}(t) = \sum_{n=1}^{N} \mathbf{u}_n(t) = \sum_{n=1}^{N} \Gamma_n \phi_n D_n(t)$$

• ukupni odziv promatrane unutarnje sile $(M(t), T(t), \dots)$:

$$r(t) = \sum_{n=1}^{N} r_n(t) = \sum_{n=1}^{N} r_n^{\mathrm{st}} A_n(t)$$

Pojašnjenje modalne analize

- riješimo problem vlastitih vrijednosti (trebamo ϕ_n i ω_n)
- odredimo statička opterećenja: raspišemo $\mathbf{m} \, \boldsymbol{\ell} = \sum \mathbf{s}_n = \frac{L_n}{M} \mathbf{m} \phi_n$
- doprinos *n*-tog oblika titranja dinamičkom odzivu:
 - r_n^{st} : statička analiza konstrukcije pri opterećenju \mathbf{s}_n
 - $A_n(t)$: dinamička analiza jednog stupnja slobode pri pobudi $\ddot{u}_g(t)$
- statička analiza ISTE konstrukcije za N opterećenja $\mathbf{s}_n \; (n=1,\ldots,N)$
- dinamička analiza N RAZLIČITIH sustava s jednim stupnjem slobode
- različiti: svakome pripada drugačiji ω_n (T_n), ζ_n i Γ_n
- množimo dva rezultata [primjerice M dijagram imes A(t)] za svaki n
- prvim određena prostorna, a drugim vremenska razdioba odziva
- zbrojimo N umnožaka $r_n^{st}A_n(t)$ u ukupni dinamički odziv zgrade

364

Analiza odziva na rotacijsku pobudu

286 · jednadžba gibanja) pri pobudi rotacijskim ubrzanjem $\ddot{\theta}_g(t)$:

$$\mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = -\mathbf{m}\,\boldsymbol{\ell}\ddot{\theta}_{g}(t), \qquad \mathbf{p}_{\mathrm{eff}}(t) = -\mathbf{m}\,\boldsymbol{\ell}\ddot{\theta}_{g}(t)$$

• 285 < primjer: utjecajni vektor $\boldsymbol{\ell} = \begin{bmatrix} h_1 & h_2 & x_3 \end{bmatrix}^{\mathrm{T}}$ (translacija: $\boldsymbol{\ell} = \boldsymbol{1}$)

- ullet statički pomaci u smjeru svih stupnjeva slobode zbog $\theta_g=1$
- odredimo ℓ : proračun kao za translaciju, ali $\ddot{u}_g(t) \longrightarrow \ddot{\theta}_g(t)$

Tlocrtno simetrične zgrade: translacijska pobuda

- višeetažne, simetrične, s uzdužno apsolutno krutim pločama
- pobuda djeluje horizontalno duž jedne osi simetrije

• 2772 • diferencijalne jednadžbe gibanja sustava:

$$\mathbf{m}\ddot{\mathbf{u}} + \mathbf{c}\dot{\mathbf{u}} + \mathbf{k}\mathbf{u} = -\mathbf{m}\mathbf{1}\ddot{u}_{g}(t)$$

vektor u: bočni pomaci katnih ploča (relativno prema tlu)

- matrica m: dijagonalna matrica masa
- član m_j: masa etaže koncentrirana u centru masa ploče j
- matrica k: matrica bočne krutosti: zbroj bočnih krutosti okvira
- vektor $\mathbf{1} = \begin{bmatrix} 1 & 1 \cdots 1 \end{bmatrix}^{\mathsf{T}}$; podsjećanje na pojmove: ^{282 < primjer}

- isti 354 sustav jednadžbi kao za modalnu analizu
- pokažimo postupak na jednom okviru

Raspis efektivnih sila potresa po vlastitim vektorima

$$\mathbf{m}\,\mathbf{1}=\sum_{n=1}^{N}\mathbf{s}_{n}=\sum_{n=1}^{N}\Gamma_{n}\mathbf{m}\phi_{n}$$

• svojstva *n*-tog $^{356_2} \cdot ^{oblika titranja:} \Gamma_n = L_n^h/M_n$ (2 · skalari):

$$\mathcal{L}_{n}^{h} = \phi_{n}^{\mathrm{T}} \mathbf{m} \mathbf{1} = \begin{bmatrix} \phi_{1n} & \phi_{2n} & \cdots \end{bmatrix} \begin{bmatrix} m_{1} & 0 & \cdots \\ 0 & m_{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \end{bmatrix} = \sum_{j=1}^{N} m_{j} \phi_{jn}$$

$$M_n = \phi_n^{\mathrm{T}} \mathbf{m} \phi_n = \begin{bmatrix} \phi_{1n} & \phi_{2n} & \cdots \end{bmatrix} \begin{bmatrix} m_1 & 0 & \cdots \\ 0 & m_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \phi_{1n} \\ \phi_{2n} \\ \vdots \end{bmatrix} = \sum_{j=1}^N m_j \phi_{jn}^2$$

• dio opterećenja m1 u smjeru *n*-tog oblika titranja (vektor):

$$\mathbf{s}_n = \Gamma_n \mathbf{m} \boldsymbol{\phi}_n = \Gamma_n \begin{bmatrix} m_1 & 0 & \cdots \\ 0 & m_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \phi_{1n} \\ \phi_{2n} \\ \vdots \end{bmatrix} = \Gamma_n \begin{bmatrix} m_1 \phi_{1n} \\ m_2 \phi_{2n} \\ \vdots \end{bmatrix}$$

• • • componente $s_{jn} = \Gamma_n m_j \phi_{jn}$: bočne sile u razinama katnih ploča

Modalni odzivi zgrade

• numerički riješimo • jednadžbu za *n*-ti oblik titranja:

$$\ddot{D}_n + 2\zeta_n \omega_n \dot{D}_n + \omega_n^2 D_n = -\ddot{u}_g(t)$$

- poznati ϕ_n i ω_n : odredimo skalare L_n^h , M_n , Γ_n i
- doprinos n-tog oblika titranja bočnim pomacima u(t):

$$\mathbf{u}_n(t) = \Gamma_n \phi_n D_n(t), \quad \left[\text{podsjetimo se: } \mathbf{u}(t) = \sum_{n=1}^N \mathbf{u}_n(t) \right]$$

komponenta u_{jn}(t): bočni pomak stropa j,

$$\begin{bmatrix} u_{1n}(t) \\ \vdots \\ u_{Nn}(t) \end{bmatrix} = \Gamma_n \begin{bmatrix} \phi_{1n} \\ \vdots \\ \phi_{Nn} \end{bmatrix} D_n(t) \implies u_{jn}(t) = \Gamma_n \phi_{jn} D_n(t)$$

• pomak stropa ako pri potresu zgrada titra samo *n*-tim oblikom 💚 🧲

• relativni pomak etaže *j* (engl. STORY DRIFT):

$$\Delta_{jn}(t) = u_{jn}(t) - u_{j-1,n}(t) = \Gamma_n(\phi_{jn} - \phi_{j-1,n})D_n(t)$$

- razlika bočnih pomaka susjednih ploča (j 1 i j)
- ekvivalentne statičke (bočne) sile:

$$\mathbf{f}_n(t) = \mathbf{s}_n A_n(t), \qquad \left[ext{podsjetimo se: } A_n(t) = \omega_n^2 D_n(t)
ight]$$

• komponenta $f_{jn}(t)$: sila u razini stropa j,

$$\begin{bmatrix} f_{1n}(t) \\ \vdots \\ f_{Nn}(t) \end{bmatrix} = \begin{bmatrix} s_{1n} \\ \vdots \\ s_{Nn} \end{bmatrix} A_n(t) \implies f_{jn}(t) = s_{jn}A_n(t)$$

opterećenje stropa ako pri potresu zgrada titra samo n-tim oblikom
odzivi (M(t), T(t),...) zbog opterećenja f_n(t): r_n(t) = r_nstA_n(t)

- statičkom analizom za opterećenje \mathbf{s}_n odredimo r_n^{st}
- ullet predznak opterećenja određen predznakom ϕ_n
- za temeljni (prvi) oblik titranja: s_{j1} djeluju u istome smjeru
- za ostale oblike: mijenjaju smjer po visini zgrade
- promotrimo šest odziva važnih za zgrade opterećene potresom

Važni statički odzivi zgrade pri djelovanju potresa			
Promatrani odziv <i>r</i>	Oznaka	Statički dio za $n-$ ti oblik (r_n^{st})	
poprečne sile u etažama	Vi	$V_{in}^{\rm st} = \sum_{j=i}^{N} s_{jn}$	
momenti u etažama	Mi	$M_{in}^{ ext{st}} = \sum_{j=i}^{N} (h_j - h_i) s_{jn}$	
poprečna reakcija	V_b	$V_{bn}^{\mathrm{st}} = \sum_{j=1}^{N} s_{jn} = \Gamma_n L_n^h \equiv M_n^*$	
moment prevrtanja	M_b	$M_{bn}^{\mathrm{st}} = \sum_{j=1}^{N} h_j s_{jn} = \Gamma_n L_n^{ heta} \equiv h_n^* M_n^*$	
pomaci stropova	u _j	$u_{jn}^{ m st} = (\Gamma_n/\omega_n^2)\phi_{jn}$	
relativni pomaci etaža	Δ_j	$\Delta_{jn}^{st} = (\Gamma_n / \omega_n^2) (\phi_{jn} - \phi_{j-1,n}) \qquad \qquad$	

- V_{in}^{st} : suma katnih opterećenja s_{jn} od krova do *i*-tog kata
- M_{in}^{st} : moment tih opterećenja na *i*-ti kat (krak $h_j h_i$)
- prve četiri veličine: statički proračun zgrade za opterećenje \mathbf{s}_n
- posljednje dvije veličine: nastale usporedbom $r_n(t) = r_n^{st} A_n(t)$ sa

$$u_{jn}(t) = \Gamma_n \phi_{jn} \underbrace{\frac{A_n(t)}{\omega_n^2}}_{D_n(t)} \quad \text{i} \quad \Delta_{jn}(t) = \Gamma_n(\phi_{jn} - \phi_{j-1,n}) \underbrace{\frac{A_n(t)}{\omega_n^2}}_{D_n(t)}$$

dobivamo: rst_{jn} = ust_{jn} = Γ_nφ_{jn}/ω²_n i rst_{jn} = Δst_{jn} = Γ_n(φ_{jn} - φ_{j-1,n})/ω²_n
DEFINIRANJE veličina M^{*}_n i h^{*}_n (Γ_n ne ovisi o sumi po etažama):

$$V_{bn}^{\rm st} = \sum_{j=1}^{N} s_{jn} = \sum_{j=1}^{N} \Gamma_n m_j \phi_{jn} = \Gamma_n \sum_{j=1}^{N} m_j \phi_{jn} = \underbrace{\Gamma_n}_{L_n^h} L_n^h = \frac{(L_n^h)^2}{M_n} = M_n^*$$

$$h_n^* = rac{L_n^{ heta}}{L_n^{ heta}}, \quad ext{uz:} \quad L_n^{ heta} = \sum_{j=1}^N h_j m_j \phi_{jn} \quad (\blacktriangleright ext{ skalar})$$

• prema tome, vrijedi:

$$M_{bn}^{st} = \sum_{j=1}^{N} h_j s_{jn} = \sum_{j=1}^{N} h_j \underbrace{\Gamma_n m_j \phi_{jn}}_{s_{jn}} = \Gamma_n \underbrace{\sum_{j=1}^{N} h_j m_j \phi_{jn}}_{L_n^{\theta}}$$
$$= \Gamma_n \underbrace{L_n^{\theta}}_{h_n^* L_n^{h}} = h_n^* \underbrace{\Gamma_n L_n^{h}}_{M_n^*} = h_n^* M_n^*$$

• veličine M_n^* i h_n^* ne ovise o načinu normiranja vlastitih vektora:

$$M_n^* = \frac{(L_n^h)^2}{M_n} = \frac{(\sum_{j=1}^N m_j \phi_{jn})^2}{\sum_{j=1}^N m_j \phi_{jn}^2}, \qquad h_n^* = \frac{L_n^\theta}{L_n^h} = \frac{\sum_{j=1}^N h_j m_j \phi_{jn}}{\sum_{j=1}^N m_j \phi_{jn}}$$

• br. i naz. sadrže ϕ_{jn}^2 , odnosno ϕ_{jn} (svejedno ϕ_{jn} ili $a\phi_{jn}$)

• koeficijenti M_n , L_n^h , L_n^θ i Γ_n sadrže samo ϕ_{jn} pa ovise o normiranju **Ukupni odziv**

• superpozicija doprinosa svih oblika titranja (st. dio iz tablice):

$$r(t) = \sum_{n=1}^{N} r_n(t) = \sum_{n=1}^{N} r_n^{\mathrm{st}} A(t)$$

Sažetak modalne analize u primjeni na zgrade

- zgrada s dvije tlocrtne osi simetrije
- potresni zapis djeluje u smjeru jedne osi
- nepravilan: određen nizom točaka $(t_i, \ddot{u}_{i,g})$
- ullet spojene pravcima: postoji točno rješ. za Δt
- rezultat: odziv (neke veličine) u vremenu
- u točki konstrukcije imamo: M(t), T(t),...

- odaberemo potresni zapis $\ddot{u}_g(t)$ definiran nizom točaka $(t_i, \ddot{u}_{g,i})$
- odredimo svojstva konstrukcije:
 - a) matricu masa m i bočne krutosti k
 - b) procijenimo koeficijent relativnog prigušenja ζ
- izračunamo prirodne frekvencije ω_n i oblike titranja ϕ_n (treba riješiti problem vlastitih vrijednosti $\mathbf{k}\phi_n = \omega_n^2 \mathbf{m}\phi_n$)
- **③** odredimo modalne komponente $\mathbf{s}_n = \Gamma_n \mathbf{m} \phi_n$ efektivnih sila potresa
- izračunamo doprinos n-tog oblika titranja ukupnom odzivu:
 - a) provedemo statički proračun za opterećenje \mathbf{s}_n [odredimo statički doprinos r_n^{st} odzivu $r_n(t)$]
 - b) izračunamo pseudoubrzanje sustava s jednim st. sl. [odredimo dinamički doprinos $A_n(t)$ odzivu $r_n(t)$]
 - c) odredimo odziv $r_n(t) = r_n^{st} A_n(t)$

o zbrojimo doprinos svih oblika titranja u ukupni odziv $[r(t) = \sum r_n(t)]$

- uobičajeno: prvih nekoliko oblika najviše doprinosi odzivu
- korake 3-6 dovoljno napraviti za manji broj oblika titranja

Efektivna modalna masa i efektivna modalna visina

- koeficijenti M_n^* i h_n^* imaju fizikalno značenje
- poprečna reakcija pri titranju n–tim oblikom:

$$V_{bn}(t) = V_{bn}^{\mathrm{st}} A_n(t)$$

- izraz u skladu s općim zapisom: $r_n(t) = r_n^{st} A_n(t)$
- prema prethodnoj tablici: $V_{bn}^{\rm st} = M_n^*$, pa je

$$V_{bn}(t) = M_n^* A_n(t)$$

- za model s 1673 4 jednim stupnjem slobode: $V_b(t) = mA(t)$
- ako su svojstva modela s jednim stupnjem slobode ω_n i ζ_n (jednaka svojstvima zgrade pri titranju n-tim oblikom)
- pripadni spektar pseudoubrzanja označimo s $A_n(t)$
- poprečna reakcija za takva svojstva: $V_b(t) = mA_n(t)$
- uočite: ako je $m = M_n^*$ ISTA poprečna reakcija za oba modela

- sustava s jednim stupnjem slobode (koncentrirane mase M_n^*) i
- višeetažne zgrade s masama m_j distribuiranim po etažama
- zato M_n^* zovemo EFEKTIVNA MODALNA MASA (poprečne reakcije)

- efektivni¹⁴ DIO ukupne mase koji uzrokuje $V_{bn}(t)$
- poprečnu silu u n-tom obliku titranja
- općenito: efektivna modalna masa nije masa zgrade!
- ukupna masa aktivna samo za model s jednim stupnjem sl.
- razlog: masa i ekvivalentna bočna sila na istom mjestu
- iz ravnoteže: bočna reakcija V_b jednaka bočnoj sili f_S
- višeetažna zgrada: mase m_j distribuirane po visini i
- ekvivalentne bočne sile s_{jn} promjenjive po visini
- oblik promjene: $m_j \phi_{jn}$ (zbog $s_{jn} = \Gamma_n m_j \phi_{jn}$, Γ_n skalar)
- iz ravnoteže: bočna reakcija $V_{bn}^{\rm st}$ jednaka sumi bočnih sila s_{jn}
- znači: i $V_{bn}^{
 m st}$ ovisi o razdiobi masa m_j i komponenata ϕ_{jn}
- budući da vrijedi: $M_n^* = V_{bn}^{\rm st} (M_n^* {
 m rezultanta sila } s_{jn})$
- M_n^* mora ovisiti o razdiobi masa i obliku vlastitog vektora

potvrda:
$$M_n^* = \frac{(L_n^h)^2}{M_n} = \frac{(\sum_{j=1}^N m_j \phi_{jn})^2}{\sum_{j=1}^N m_j \phi_{jn}^2}$$

• važno: suma efektivnih modalnih masa jednaka masi konstrukcije,

• • dokaz: množimo (367, • raspis) m 1 sa
$$\mathbf{1}^{\mathrm{T}} \Rightarrow \mathbf{1}^{\mathrm{T}}$$
m $\mathbf{1} = \sum_{n=1}^{N} \Gamma_n(\mathbf{1}^{\mathrm{T}} \mathbf{m} \phi_n)$

• matrica **m** dijagonalna, pa množenjem dobivamo:

$$\sum_{n=1}^{N} m_{j} = \sum_{n=1}^{N} \Gamma_{n} \sum_{j=1}^{N} m_{j} \phi_{jn} = \sum_{n=1}^{N} \underbrace{\Gamma_{n} L_{n}^{h}}_{M_{n}^{*}} = \sum_{n=1}^{N} M_{n}^{*}$$

• moment prevrtanja pri titranju *n*-tim oblikom:

$$M_{bn}(t) = M_{bn}^{
m st} A_n(t) \quad ig[{
m u} \; {
m obliku} \; r_n(t) = r_n^{
m st} A_n(t) ig]$$

• prema tablici: $M_{bn}^{\rm st} = h_n^* M_n^*$, pa je

$$M_{bn}(t) = h_n^* \underbrace{M_n^* A_n(t)}_{V_{bn}(t)} = h_n^* V_{bn}(t)$$

- za model s 1674 jednim stupnjem slobode: $M_b(t) = hV_b(t) = hmA(t)$
- ako je masa modela s jednim stupnjem slobode M_n^* , na visini h_n^*
- moment prevrtanja je jednak M_{bn}
- momentu prevrtanja zgrade pri titranju n-tim oblikom
- s masom distribuiranom po etažama
- zato h_n^* zovemo efektivna modalna visina (momenta prevrtanja)
- pojašnjenje: visina hvatišta rezultante bočnih sila s_{jn} (ili f_{jn})

- općenito: efektivna modalna visina nije visina građevine!
- ukupna visina aktivna samo za model s jednim stupnjem sl.
- razlog: ukupna masa i ekvivalentna bočna sila na vrhu
- zgrada: mase *m_j* i bočne sile *s_{jn}* distribuirane po visini
- očito: hvatište h_n^* bočnih sila niže od ukupne visine h
- razdioba s_{jn} jest $m_j \phi_{jn}$: ovisi o masi i obliku titranja
- razdioba utječe na hvatište efektivnu modalnu visinu
- znači: i h_n^* ovisi o razdiobi masa i obliku vlastitog vektora

potvrda:
$$h_n^* = \frac{L_n^{\theta}}{L_n^h} = \frac{\sum_{j=1}^N h_j m_j \phi_{jn}}{\sum_{j=1}^N m_j \phi_{jn}}$$

važno: jednaka suma momenata masa M^{*}_n i m_j oko temelja
krakovi h^{*}_n i h, a sume po vl. vektorima, odnosno etažama

$$\sum_{n=1}^{N} h_n^* M_n^* = \sum_{j=1}^{N} h_j m_j$$

• dokaz) uvodimo vektor **mh**, gdje je **h** = $\begin{bmatrix} h_1 & \cdots & h_N \end{bmatrix}^T$
• raspišemo ga $3564 \cdot po \text{ silama inercije}$ (uz $\ell = \mathbf{h}$):

$$\mathbf{mh} = \sum_{n=1}^{N} \Gamma_n \mathbf{m} \phi_n = \sum_{n=1}^{N} \underbrace{\frac{\Gamma_n}{M_n}}_{M_n} \mathbf{m} \phi_n = \sum_{n=1}^{N} \underbrace{\frac{\mu_n^0}{M_n}}_{M_n} \mathbf{m} \phi_n = \sum_{n=1}^{N} \frac{L_n^0}{M_n} \mathbf{m} \phi_n$$

• primijetite: matrica **m** dijagonalna, pa je ϕ_n^{T} **mh** = $\sum_{j=1} \phi_{jn} m_j h_j = L_n^{\theta}$

• množenjem raspisa s $\mathbf{1}^{\mathrm{T}}$ dobivamo: $\mathbf{1}^{\mathrm{T}}\mathbf{mh} = \sum_{n=1}^{N} \frac{L_{n}^{\theta}}{M_{n}} \mathbf{1}^{\mathrm{T}}\mathbf{m\phi}_{n}$

• raspisano (uz dijagonalnu matricu **m**):

$$\sum_{j=1}^{N} m_j h_j = \sum_{n=1}^{N} \frac{L_n^{\theta}}{M_n} \sum_{\substack{j=1\\ L_n^{h}}}^{N} m_j \phi_{jn} = \sum_{n=1}^{N} \frac{L_n^{\theta}}{M_n} L_n^{h} \frac{L_n^{h}}{L_n^{h}}$$
$$= \sum_{n=1}^{N} \frac{(L_n^{h})^2}{M_n} \underbrace{\frac{L_n^{\theta}}{L_n^{h}}}_{M_n^{*}} = \sum_{n=1}^{N} M_n^{*} h_n^{*}$$

- za više oblike titranja (drugi, treći,...): h_n^* može biti negativan
- razlog: $V_{bn}^{\rm st}$ i $M_{bn}^{\rm st}$ suprotnih predznaka,

$$h_n^* = \frac{M_{bn}(t)}{V_{bn}(t)} = \frac{M_{bn}^{\rm st}A_n(t)}{V_{bn}^{\rm st}A_n(t)} = \frac{M_{bn}^{\rm st}}{V_{bn}^{\rm st}}$$

• za temeljni oblik titranja: V_{b1}^{st} i M_{b1}^{st} prema definiciji pozitivni

• prema tablici (str. 371.):

$$egin{aligned} V_{b1}^{ ext{st}} &= \sum_{j=1}^{N} s_{j1} > 0, & (ext{sile } s_{j1} > 0) \ M_{b1}^{ ext{st}} &= \sum_{j=1}^{N} h_{j} s_{j1} > 0, & (ext{visine } h_{j} > 0) \end{aligned}$$

• ili: sve komponente $\phi_{j1} > 0$, pa je

$$h_1^* = \frac{L_1^{\theta}}{L_1^{h}} = \frac{\sum_{j=1}^{N} h_j m_j \phi_{j1}}{\sum_{j=1}^{N} m_j \phi_{j1}} > 0,$$

(h_j > 0 i m_j > 0)

Primjer proračuna: peteroetažna posmična zgrada

- masa etaže: m = 450 kN/g, tlocrt: 9 × 5 = 45 m², težina: 10 kN/m²
- visina etaže: $h = 3,7 \,\mathrm{m}$
- krutost etaže: $k = 5500 \, \mathrm{kN/m}$,

za 6 stupova kvadratnog poprečnog presjeka: $k = 6 \cdot 12 E I_c / h^3$, $I_c = a^4 / 12$, $a = (\frac{1}{6} k h^3 / E)^{1/4}$

- ab stupovi: E = 30 GPa, pa je a = 0, 2 m
- opterećenje: $\ddot{u}_g(t)$ zapis ubrzanja (ElCentro)

• prigušenje: $\zeta = 5\%$ (uobičajeno za ab zgradu)

$$\begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & -1 & 2 & -1 & \\ & & -1 & 2 & -1 & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 1 \end{bmatrix}$$
 (izvod na
str. 241. i
242.)

- problem vlastitih vrijednosti: det $[\mathbf{k} \omega_n^2 \mathbf{m}] = 0$
- raspis determinante: karakteristični polinom 5. stupnja po ω_n^2
- rješenja: nultočke ω_1,\ldots,ω_5 ($T_1=2\pi/\omega_1,\ldots,T_5=2\pi/\omega_5$)
- poznati ω_n : iz $[\mathbf{k} \omega_n^2 \mathbf{m}] \phi_n = \mathbf{0} \Rightarrow \phi_n$, normiramo $(M_n = 1)$

• dulji prvi period: stupovi (20/20) vitkiji od uobičajenih

- tada su veći doprinosi ostalih perioda odzivu zgrade
- završena prva tri koraka proračuna (prema sažetku na str. 375.)

$$\phi_{1} = \begin{bmatrix} 0,025\\ 0,048\\ 0,067\\ 0,081\\ 0,088 \end{bmatrix} \phi_{2} = \begin{bmatrix} -0,067\\ -0,088\\ 0,025\\ 0,081\\ 0,025\\ 0,081 \end{bmatrix} \phi_{3} = \begin{bmatrix} 0,088\\ 0,025\\ -0,081\\ -0,048\\ 0,067 \end{bmatrix} \phi_{4} = \begin{bmatrix} -0,081\\ 0,067\\ 0,025\\ -0,088\\ 0,048 \end{bmatrix} \phi_{5} = \begin{bmatrix} 0,048\\ -0,081\\ 0,088\\ -0,067\\ 0,025 \end{bmatrix}$$

• četvrti korak proračuna (raspis **m1** po vlastitim vektorima):

367. < skalari:
$$L_n^h = \sum_{j=1}^N m_j \phi_{jn},$$
Svojstva oblika titranja $M_n = \sum_{j=1}^N m_j \phi_{jn}^2$ i $Oblik$ M_n L_n^h/m $L_n^\theta/(hm)$ $M_n = \sum_{j=1}^N m_j \phi_{jn}^2$ i1. $1,000$ $0,309$ $1,086$ $2.$ $1,000$ $-0,097$ $0,118$ $3.$ $1,000$ $0,051$ $0,038$ $4.$ $1,000$ $-0,029$ $0,016$ $5.$ $1,000$ $0,013$ $0,007$

• primijetite: $m_j = m$ i $h_j = jh$, pa m u L_n^h i hm u L_n^{θ} ispred \sum

- prema tablici odredimo $\Gamma_n = L_n^h/M_n = L_n^h$, $(M_n = 1)$ i
- bočne sile $\mathbf{s}_n = \Gamma_n \mathbf{m} \phi_n$, $(s_{jn} = \Gamma_n m_j \phi_{jn}$ 368 · komponente po katovima)

- promjena smjera \mathbf{s}_n po visini: određena promjenom ϕ_n po visini
- ullet komponente prvog oblika titranja i katne sile $oldsymbol{s}_1$ u istome smjeru
- komponente ostalih oblika i katne sile: mijenjaju smjer po visini
- skalar Γ_n : mijenja predznak svih sila, ne uzrokuje promjenu po visini
- ullet uočite: najveći doprinos prvog oblika titranja rastavu $ullet s = oldsymbol{m1}$
- postupno smanjenje doprinosa ostalih oblika tome rastavu

- 5. korak proračuna pod a) (određivanje važnih statičkih (371 < odziva):
- i dalje vrijedi $\Gamma_n = L_n^h$, jer je $M_n = 1$

_							
$V_{l}^{\text{st}} = \sum_{i=1}^{5} s_{in} = (I^{h})^{2}$	Promatrani statički odzivi						
j=1	Oblik	$V_{bn}^{ m st}/m$	$V_{5n}^{ m st}/m$	$M_{bn}^{ m st}/(mh)$	u_{5n}^{st}		
$V^{\rm st} = \sum_{i=1}^{5} c_i = c_i$	1.	4,379	1,247	15,391	0,129		
$v_{5n} = \sum_{i=5}^{5} s_{in} = s_{5n}$	2.	0,433	-0,360	-0,520	-0,004		
J=5	3.	0,120	0,157	0,091	0,0008		
$M^{\rm st} = \sum_{h=0}^{3} h_{\rm st} = I^{h} I^{\theta}$	4.	0,039	-0,064	-0,021	-0,0002		
$V_{bn} = \sum_{j=1}^{n} I_j s_{jn} = L_n L_n$	5.	0,008	0,015	0,004	0,00003		
-							

$$u_{5n}^{\rm st} = (\Gamma_n / \omega_n^2) \phi_{5n} = \left[L_n^h / (2\pi / T_n)^2 \right] \phi_{5n}$$

- statički odzivi najveći za prvi oblik titranja
- postupno smanjenje odziva za ostale oblike
- efektivne modalne mase i visine: $M_n^* = V_{bn}^{\rm st}$ i $h_n^* = M_{bn}^{\rm st}/V_{bn}^{\rm st}$

• vrijednosti h_n^* risane na istu stranu (bez promjene predznaka)

- uočite: $\sum M_n^* = 5m = \sum m_j$ i $\sum h_n^*M_n^* = 15mh = \sum h_jm_j$
- ranije dokazano: $379 \cdot \sum M_n^* = \sum m_j$ i $382 \cdot \sum h_n^* M_n^* = \sum h_j m_j$
- usput, suma članova 2. stupca: ukupna statička poprečna sila,

$$V_{bn}^{\text{st}} = M_n^* \Big/ \sum_{n=1}^5 V_b^{\text{st}} = \sum_{n=1}^5 V_{bn}^{\text{st}} = \sum_{n=1}^5 M_n^* = 5m_n^*$$

• suma članova 4. stupca: ukupni statički moment prevrtanja,

$$M_{bn}^{\rm st} = h_n^* M_n^* \Big/ \sum_{n=1}^5 \qquad M_b = \sum_{n=1}^5 M_{bn}^{\rm st} = \sum_{n=1}^5 h_n^* M_n^* = 15 mh$$

- potresni zapis određen nizom točaka $(t_i, \ddot{u}_{g,i})$, vrijedi: $t_{i+1} = t_i + \Delta t$
- prirast $\Delta t = 0,01$ i trajanje zapisa od 30 s: potrebno 3000 točaka
- ullet zahtjev: Δt dovoljno mali za precizno definiranje zapisa i odziva
- 5. korak proračuna pod b) (odrediti $A_n(t)$ sustava s jednim st. sl.)
- svakoj konzoli (za svaki oblik titranja) pripadaju T_n i ζ_n
- numerički proračun odziva: metodama vremenskog prirasta
- na kraju svakog Δt izračunamo D_n [diskretna vrijednost od $D_n(t)$]
- zatim prema formuli odredimo $A_n(t) = \omega_n^2 D_n(t)$
- napredujemo po prirastima do kraja potresnog zapisa
- točke (njih 3000) spojimo pravcima
- aproksimacija krivulja odziva $D_n(t)$ i $A_n(t)$ poligonom

- točke vrlo bliske: poligon vizualno poput krivulje
- provedemo za svaki od pet sustava s jednim st. sl. $(n = 1, \dots, 5)$
- ullet prikazan samo dio odziva koji sadrži ekstreme (prvih $15\,\mathrm{s})$

- 5. korak proračuna pod c) [ukupni modalni odzivi: $r_n(t) = r_n^{st} A_n(t)$]
- u svakom t_i: statičke vrijednosti (tablica, str. 389.) množimo s A_n
- dobivamo ukupne modalne odzive: V_{bn} , V_{5n} , u_{5n} i M_{bn}

393

- uočite relativne doprinose pojedinih oblika titranja
- prema tablici statičkih odziva: doprinos 1. oblika titranja najveći
- često dobra procjena, ali ne uvijek: pogledajte V_{bn} i V_{5n}

- 6. korak proračuna [ukupni odziv: $r(t) = \sum_{n=1}^{5} r_n(t)$]
- zbrojimo pet funkcija u ukupnu funkciju odziva
- rezultat: posljednja funkcija na str. 393. i 394. (V_b , V_5 , u_5 i M_b)
- uočite: nisu potrebni doprinosi svih oblika titranja
- ovaj primjer: doprinosi četvrtog i petog oblika zanemarivi

Završne napomene

• važno: ekstreme od $D_n(t)$ i $A_n(t)$ odredimo izravno iz spektra

- za pripadni T_n i ζ_n očitamo ih sa spektralne krivulje
- znači: vršne vrijednosti odredimo bez dinamičkog proračuna
- 2 ekstremi od $A_n(t)$ i $r_n(t)$ nastupaju istodobno
 - dokaz: vrijedi formula $r_n(t) = r_n^{st} A_n(t) (r_n^{st}$ ne ovisi o vremenu)

ne nastupaju istodobno ekstremi:

- ukupnog i modalnih odziva neke veličine (npr. V_b i V_{bn})
- ukupnog odziva nekih veličina (npr. V_b i V_5); iako su isti $A_n(t)$

Primjer proračuna: podatljivi (slabi) peti kat

- peteroetažna zgrada: posljednji kat manje krutosti i mase od ostalih
- namjena: strojarnica za smještaj pogona (za liftove, klimatizaciju,...)
- posljedica: postoje BLISKI PERIODI titranja zgrade (ovdje T₁ i T₂)
- krutost: $k_5 = 0,0012k$, $k = 4000 \, {
 m kN/m}$; masa: $m_5 = 0,01m$
- masa *m*, visina *h*, prigušenje ζ i pobuda $\ddot{u}_g(t)$: kao prethodni primjer

Promatrani statički odzivi									
Odzivi	Oblik titranja								
	1.	2.	3.	4.	5.				
$V_{bn}^{ m st}/m$	1,951	1,633	0,333	0,078	0,015				
$V_{5n}^{ m st}/m_5$	9,938	-8,979	0,046	-0,007	0,0001				

- 1. i 2. oblik titranja: T₁, T₂ bliski i VELIKA IZOBLIČENJA petog kata
- oba oblika uzrokuju statičke odzive sličnih iznosa,
- poprečnu reakciju Vst_{bn} istog predznaka i
- poprečnu silu u slabom katu $V_{5n}^{
 m st}$ suprotnog predznaka
- slični su i dinamički odzivi $D_n(t)$ za oba oblika (praktički su u fazi)
- jer im pripada slična dinamička 369 jednadžba
- razlog: T_n (pa i ω_n) slični, a početni uvjeti (mirovanje), ζ i $\ddot{u}_g(t)$ isti
- zbog sličnih D_n : $A_n(t) = \omega_n^2 D_n(t) = (2\pi/T_n)^2 D_n(t)$ također u fazi @G

- doprinosi prvih dvaju oblika: slični po iznosu (str. 400.), jer
- statički doprinosi $r_n^{\rm st}$ ($V_{bn}^{\rm st}$ i $V_{5n}^{\rm st}$) sličnih iznosa (tablica, str. 397.)
- slične i funkcije dinamičkih odziva $A_n(t)$

- za poprečnu reakciju V_b(t):
- statički doprinosi $V_{bn}^{\rm st}$ istog predznaka (tablica)
- dinamički odzivi $A_n(t)$ u fazi
- znači: slični doprinosi $V_{bn}^{\rm st}A_n(t)$ prvih dvaju oblika (str. 400.)
- PUNIM IZNOSIMA doprinose sumi $\sum V_{bn}^{\mathrm{st}} A_n(t)$
- poprečna reakcija puno veća od pojedinog doprinosa (str. 400.)
- za poprečnu silu u petom (slabom) katu $V_5(t)$:
- statički doprinosi različitih predznaka (tablica)
- vrijede isti dinamički odzivi $A_n(t)$: u fazi su
- znači: doprinosi $V_{5n}^{\rm st}A_n(t)$ različitih predznaka (str. 400.)
- u ukupnoj sumi teže međusobnom poništenju
- važno: preostala poprečna sila može biti velika
- $\bullet\,$ ovdje: približno jednaka težini kata ($V_5=4,44\,\mathrm{kN},\,m_5=4,5\,\mathrm{kN/g})$
- omjer poprečne sile i težine kata blizak 1: oštećenja (str. 401.)

400

izvor: http://www.fgg.uni-lj.si/kmk/esdep/master/wg17/10100.htm

Proračun primjenom spektra odziva

- prikazani postupak: proračun odziva u vremenu, r(t) funkcija vremena
- međutim: dimenzioniranje temeljimo na vršnim silama i pomacima
- ključno: Možemo li odrediti vršnu vrijednost izravno iz spektra odziva?
- za sustav s jednim stupnjem slobode: prema definiciji da (str. 168.)
- za sustav s više stupnjeva slobode: UVJETNO DA
- to znači: ekstrem nije točan jednak vršnoj vrijednosti funkcije r(t)
- ali: procjene dovoljno dobre za potrebe dimenzioniranja konstrukcije

Vršne vrijednosti modalnih odziva

- vršna vrijednost r_{n0} modalnog odziva $r_n(t)$: poznata iz spektra odziva
- podsjetimo se (str. 362.): $r_n(t) = r_n^{st} A_n(t)$
- uz vršnu vrijednost pseudoubrzanja A_n : $r_{n0} = r_n^{st} A_n$
- iznos A_n: poznat iz stvarnog (str. 178.) ili projektnog spektra (str. 211.)
- primijetite: gubimo vrijeme nastupa ekstrema r_{n0} (r_n^{st} ne ovisi o t)

- funkciju $r_n(t)$ zamjenjujemo vršnom vrijednosti: skalarom r_{n0}
- predznak vršne vrijednosti r_{n0} : jednak predznaku r_n^{st}
- iznos A_n prema definiciji pozitivan: ordinata spektra pseudoubrzanja
- istodobni nastup ekstrema r_{n0} bilo kojeg modalnog odziva $r_n(t)$
- vrijeme nastupa: jednako trenutku nastupa ekstrema od $A_n(t)$
- i od $D_n(t)$ (jer je $A_n(t) = \omega_n^2 D_n(t)$ i ω_n^2 ne ovisi o t)
- odaberite n: uočite vrijeme pojave ekstrema (str. 392.)
- jednako vremenu nastupa ekstrema odziva za isti n (str. 393. i 394.)
- slično: usporedite ekstreme za isti n na str. 398. i 400. (slabi kat)

Pravila modalnih kombiniranja

- poznajemo vršne vrijednosti modalnih odziva $r_{n0}~(n=1,\ldots,N)$
- problem: odrediti ekstrem (amplitudu) ukupnog odziva $r_0 = \max_t |r(t)|$
- razlog: vršne vrijednosti r_{n0} ali i r_0 nastupaju u različitim vremenima
- usporedite vremena nastupa na str. 393., 394. ili 400. za razne n

- znači: za međusobno kombiniranje nužne aproksimacije
- gornja granica: zbroj apsolutnih vrijednosti svih ekstrema

$$r_0 \leq \sum_{n=1}^N |r_{n0}|$$

- sve vršne vrijednosti istih predznaka i nastupaju istodobno
- izrazito konzervativna pretpostavka (previše na sigurnu stranu)
- nije ekonomična: rijetko se rabi za proračune konstrukcija
- naziv aproksimacije: pravilo apsolutne sume (ABSSUM)
- prijedlog E. Rosenbluetha (1951. godine):

$$r_0 \approx \sqrt{\sum_{n=1}^{N} r_{n0}^2}$$

- naziv aproksimacije: pravilo drugog korijena sume kvadrata
- skraćeno SRSS (od engl. square root of sum of squares)
- odlična aproksimacija za konstrukcije s dobro razmaknutim periodima
- loša procjena za konstrukcije s bliskim periodima
- česti primjer bliskih perioda: zgrada nesimetričnog tlocrta
- problem riješen aproksimacijom:

$$r_0 \approx \sqrt{\sum_{i=1}^{N} \sum_{n=1}^{N} \rho_{in} r_{i0} r_{n0}}$$

- naziv: pravilo potpune kvadratne kombinacije
- skraćeno CQC (od engl. COMPLETE QUADRATIC COMBINATION)

• svaki od N^2 članova izraza jest korijen produkta:

- vršnih odziva r_{i0} i r_{n0} pri titranju zgrade i-tim i n-tim oblikom i
- KOEFICIJENTA KORELACIJE (međuovisnosti) tih oblika ρ_{in} (vrijedi: $0 \le \rho_{in} \le 1$ i $\rho_{in} = 1$ za i = n)
- radi usporedbe s pravilom SRSS raspišimo izraz CQC u obliku:

$$r_0 \approx \sqrt{\sum_{n=1}^{N} r_{n0}^2 + \sum_{i=1}^{N} \sum_{n=1}^{N} \rho_{in} r_{i0} r_{n0}}$$

- prva suma (članovi za i = n): poput pravila SRSS, svi članovi pozitivni
- dvostruka suma (preostali članovi, za $i \neq n$): pozitivni ili negativni
- članovi negativni: ako su r_i^{st} i r_n^{st} suprotnih predznaka
- jednako predznacima od r_{i0} i r_{n0} jer je A_n prema definiciji pozitivan
- znači: iznos dvostruke sume smanjuje ili povećava iznos prve sume

- ipak: dvostruka suma (pa i cijeli iznos) uvijek pozitivni
- prema definiciji koeficijenta korelacije: nekoliko CQC inačica
- danas najviše u uporabi (prema Der Kiureghianu):

$$\rho_{in} = \frac{8\sqrt{\zeta_i\zeta_n}(\beta_{in}\zeta_i + \zeta_n)\beta_{in}^{3/2}}{(1 - \beta_{in}^2)^2 + 4\zeta_i\zeta_n\beta_{in}(1 + \beta_{in}^2) + 4(\zeta_i^2 + \zeta_n^2)\beta_{in}^2}$$

- vrijedi (uz $\beta_{in} = \omega_i / \omega_n$): $0 \le \rho_{in} \le 1$, $\rho_{in} = \rho_{ni}$ i $\rho_{in} = 1$ za i = n
- ulletza dva oblika titranja istih perioda i prigušenja $\rho_{\it in}$ također 1
- ako je isti iznos prigušenja za sve oblike titranja ($\zeta_i = \zeta_n = \zeta$):

$$\rho_{in} = \frac{8\zeta^2 (1+\beta_{in})\beta_{in}^{3/2}}{(1-\beta_{in}^2)^2 + 4\zeta^2 \beta_{in} (1+\beta_{in})^2}$$

važno: iznos koeficijenta naglo opada ako su frekvencije razmaknute
posebno izraženo za manje iznose prigušenja što je tipičan slučaj
uočite usko područje oko β_{in} = 1 sa značajnim iznosima ρ_{in}

- primjer: za $\zeta = 5\%$ iznos $ho_{\it in} > 0,1$ vrijedi tek za $1/1,35 \le eta_{\it in} \le 1,35$
- ako je $\zeta=2\%$ isti iznos vrijedi za još uže područje $1/1, 13 \leq \beta_{\it in} \leq 1, 13$
- za konstrukcije s dobro razmaknutim periodima: $\rho_{\it in}\approx 0$
- posljedica: svi članovi dvostruke sume (za $i \neq j$) iščezavaju (str. 407.)
- ostaje samo prva suma: izraz za CQC reducira se na izraz za SRSS
- potvrda tvrdnje da SRSS vrijedi samo za dobro razmaknute periode
- istaknimo: pravila SRSS i CQC temeljena na teoriji slučajnih titranja
- r₀: srednja vrijednost ekstremnih odziva iz skupa potresnih zapisa
- dakle: pravila najbolje upotrijebiti uz **PROJEKTNI** (glatki) spektar
- razlog: određen kao medijan spektara većeg broja zapisa
- konzervativno: iz medijan plus jedna standardna devijacija
- pravila su PROCJENA: postoje pogreške koje nisu na sigurnu stranu
- iznos pogreške ovisi o: periodima, oblicima titranja i obliku spektra
- analizom velikog broja zgrada ustanovljena pogreška do 25%

- najveća pogreška: pri ocjeni lokalnog odziva
- primjeri: katni pomak, poprečna sila ili moment u višim etažama
- pogreška raste ili pada ako rabimo nazubljeni spektar jednog zapisa

Pojašnjenje spektralne analize

- spektralna analiza: postupak za dinamički proračun konstrukcije
- iako je dinamičke prirode reducira se na niz statičkih proračuna
- za svaki promatrani oblik titranja:
 - provodimo statičku analizu konstrukcije opterećene silama \mathbf{s}_n
 - dobivamo statičke odzive r_n^{st} (primjerice moment u nekom presjeku)
 - množimo ih ordinatom spektra pseudoubrzanja A_n [ekstrem od $A_n(t)$!]
 - dobivamo vršni modalni odziv u nekom presjeku $r_{n0} = r_n^{\rm st} A_n$
 - radi određivanja $A_n = \max_t |A_n(t)|$ nije potreban proračun u vremenu
- postupak jest dinamički: rabi periode, oblike titranja, prigušenje i
- dinamička svojstva potresnog zapisa (primjenom spektra odziva)
- proračuni u vremenu nisu potrebni: već obavljeni pri tvorbi spektra
Spektralna analiza višeetažnih simetričnih zgrada

- promatramo višekatnice dvoosno simetričnog tlocrta
- pobuda: djelovanje potresa duž jedne osi simetrije
- VRŠNA vrijednost¹⁵ doprinosa *n*-tog oblika titranja: $r_n = r_n^{st} A_n$
- određivanje r_n^{st} : statičkim proračunom za opterećenje silama \mathbf{s}_n
- izrazi za važnije r_n^{st} (primjerice u_{jn}^{st} , Δ_{jn}^{st} , V_{bn}^{st} , M_{bn}^{st}): tablica, str. 371.
- ukupni vršni modalni odzivi (u skladu s izrazom za r_n):

$$u_{jn} = u_{jn}^{\text{st}} A_n = \underbrace{\left(\Gamma_n / \omega_n^2\right) \phi_{jn}}_{str. 371.} \underbrace{\omega_n^2 D_n}_{A_n} = \Gamma_n \phi_{jn} D_n$$
$$\Delta_{jn} = \Delta_{jn}^{\text{st}} A_n = \underbrace{\left(\Gamma_n / \omega_n^2\right) (\phi_{jn} - \phi_{j-1,n})}_{str. 371.} \underbrace{\omega_n^2 D_n}_{A_n} = \Gamma_n (\phi_{jn} - \phi_{j-1,n}) D_n$$

$$V_{bn} = V_{bn}^{\mathrm{st}} A_n = M_n^* A_n \qquad M_{bn} = M_{bn}^{\mathrm{st}} A_n = h_n^* M_n^* A_n$$

¹⁵izostavimo indeks 0: umjesto r_{n0} pišemo samo r_n

- vrijednost $D_n = D(T_n, \zeta_n)$: ordinata spektra pomaka za T_n i ζ_n
- vrijednost $A_n = A(T_n, \zeta_n)$: ordinata spektra pseudoubrzanja za T_n i ζ_n
- drugi način određivanja A_n : uz poznati D_n umnožak $\omega_n^2 D_n = A_n$
- odzivi su vršni jer su D_n i A_n vršne vrijednosti od $D_n(t)$ i $A_n(t)$
- statički doprinosi $r_n^{\rm st}$ konstantni u vremenu: ne određuju ekstrem
- slično: ekvivalentne statičke sile koje uzrokuju vršne modalne odzive

$$\mathbf{f}_n = \mathbf{s}_n A_n \qquad f_{jn} = \Gamma_n m_j \phi_{jn} A_n$$

- vektor $\mathbf{f}_n = \begin{bmatrix} f_{1n} & \dots & f_{Nn} \end{bmatrix}^{\mathrm{T}}$: bočne sile koje uzrokuju vršne odzive
- u $\mathbf{f}_n(t) = \mathbf{s}_n A_n(t)$ [str. 361.] vrijednost $A_n(t)$ zamijenjena vršnom A_n
- prema tome: vektor \mathbf{f}_n sadrži vršne vrijednosti vektora $\mathbf{f}_n(t)$
- sile $s_{jn} = \Gamma_n m_j \phi_{jn}$ (str. 368. i 388.) ne ovise o t: ne određuju ekstrem
- jedna statička analiza za svaki oblik titranja n
- praktična realizacija: rabi se izravno f_n; rezultat odmah ukupni r_n

- ako se rabi prvo \mathbf{s}_n : rezultat proračuna r_n^{st} ; potom ga množimo s A_n
- uporaba statičkog odziva r_n^{st} pedagoške prirode: naglašava činjenicu
- statičku analizu za opterećenje \mathbf{s}_n potrebno provesti samo jednom
- unatoč tomu: odziv $r_n(t)$ dobivamo u funkciji vremena (u svakom t)

- vršni doprinos r_n ukupnom odzivu r: statičkom analizom za sile f_n
- ullet smjer djelovanja komponenata $f_{jn}:$ određen smjerom komponenata ϕ_{jn}
- za temeljni (prvi) oblik titranja: djeluju u istom smjeru (str. 414.)
- za više oblike titranja: sile mijenjaju smjer po visini zgrade
- primijetite: za određivanje u_{jn} i Δ_{jn} NIJE POTREBNA statička analiza
- tvrdnja proizlazi iz strukture formula na str. 412.
- dovoljno riješiti problem vlastitih vrijednosti, odrediti Γ_n i očitati D_n
- procjena vršne vrijednosti odziva: primjenom pravila CQC ili SRSS
- treba uključiti sve oblike titranja koji značajno utječu na odziv

Sažetak spektralne analize višeetažnih simetričnih zgrada

- promatramo zgradu od N katova
- tlocrt: dvije okomite osi simetrije
- potres djeluje u smjeru jedne osi
- određen spektralnom krivuljom

- odaberemo spektralnu krivulju i odredimo svojstva konstrukcije:
 - a) matricu masa **m** i bočne krutosti **k**
 - b) procijenimo koeficijent relativnog prigušenja ζ
- Izračunamo frekvencije ω_n ($T_n = 2\pi/\omega_n$) i oblike titranja ϕ_n (treba riješiti problem vlastitih vrijednosti $\mathbf{k}\phi_n = \omega_n^2 \mathbf{m}\phi_n$)
- izračunamo vršni odziv r_n pri titranju n-tim oblikom:
 - a) odredimo pomak i pseudoubrzanje D_n i A_n (za pripadne T_n i ζ_n očitamo ordinate spektra)
 - b) izračunamo pomake stropova i relativne pomake etaža (odredimo $\Gamma_n = \phi_n^{\mathrm{T}} \mathbf{m} \ell / (\phi_n^{\mathrm{T}} \mathbf{m} \phi_n)$, potom u_{jn} i Δ_{jn})
 - c) odredimo ekvivalentne statičke bočne sile \mathbf{f}_n
 - (opterećenje $\mathbf{f}_n = \mathbf{s}_n A_n$, komponente $f_{jn} = \Gamma_n m_j \phi_{jn} A_n$)
 - d) provedemo statički proračun za opterećenje f_n (odredimo r_n: reakcije i unutarnje sile u konstrukciji)
- pravilom SRSS ili CQC procijenimo ukupni vršni iznos odziva r₀ (ako su periodi razmaknuti vrijedi SRSS, za bliske periode CQC)
 - korake 2–4 dovoljno napraviti za manji broj oblika titranja

Literatura

- Chopra, K. A.: DYNAMICS OF STRUCTURES, Theory and Application to Earthquake Engineering, Fourth Edition, Prentice Hall, New Jersey, 2007.
- Penzien, J.; Clough, R.: DYNAMICS OF STRUCTURES, Second Edition (Revised), Computers & Structures, Inc., Berkeley, USA, 2003.
- Humar, L. J.: DYNAMICS OF STRUCTURES, Second Edition, A. A. Balkema Publishers, Lisse, 2002.
- Tedesco, W. J.; McDougal, G. W.; Ross, A. C.: STRUCTURAL DYNAMICS, Theory and Applications, Addison–Wesley, Menlo Park, California, 1999.
- Mihanović, A.: DINAMIKA KONSTRUKCIJA, Građevinski fakultet Sveučilišta u Splitu, Split, 1995.
- Čaušević, M.: DINAMIKA KONSTRUKCIJA, diskretni sustavi, Školska knjiga, Zagreb, 2005.

Literatura

- Paz, M.; Leigh, W.: STRUCTURAL DYNAMICS, Theory and Computation, Fifth Edition, Kluwer Academic Publishers, Boston, 2004.
- Den Hartog, J. P.: MECHANICAL VIBRATIONS, Third Edition, McGraw–Hill Book Company, New York, 1947.