II Vježba

Propagacija vodnog vala u otvorenom koritu

Primjer izračunat korištenjem programa HEC-RAS

Kao što je u vježbama navedeno za računanje propagacije vodnog vala se može koristiti i dostupan postojeći program HEC-RAS. U okviru numeričkih vježbi iz hidraulike je praksa izrada vlastitih proračuna kako bi se budući inženjeri upoznali sa jednostavnim metodama proračuna koji u inženjerskoj praksi mogu poslužiti za izradu idejnih rješenje ili verifikacije (uhodavanja) znatno složenijih programa. Obzirom da za potrebe proračuna vodnog lica u nestacionarnom tečenju ne postoje prikladne (jednostavne) metode, napravljena je iznimka te je primjer prikazan u praktikumu u ovom prilogu izračunat i pomoću programa HEC RAS. Program je dostupan na internetu te se ne traži nikakva naknada za njegovo korištenje.

Primjer

Na dionici otvorenog korita su u početnom (uzvodnom) presjeku A zadani $Q/Q_o - t i h/h_o - t$ dijagram, čime je opisan prolazak vodnog vala kroz kontrolni presjek (rubni uvjet). Za zadane hidrauličke parametre korita odredi Q - t, h - t i Q - h dijagram u točki B te usporedi Q - hdijagram s konsupcionom krivuljom za normalno tečenje. Kanal je pravokutnog poprečnog presjeka širine B i duljine L sa Manningovim koeficijentom hrapavosti n pad kanala I_o je konstantan.

Slika 1. Skica modelirane dionice korita sa oznakama karakterističnih hidrauličkih veličina

Slika 3 Poprečni i uzdužni presjek korita u početnom trenutku t₀

HEC_RAS

Program je potrebno instalirati na računalo. Program je dostupan na stranici <u>http://www.hec.usace.army.mil/software/hec-ras/</u>.

Nakon što se program pokrene treba odabrati File – New Project te se otvara prozor (Slika 1)

Title	File Name	Selected Folder Default Project Folder My Documents
	.prj	C:\Documents and Settings\admin\My Documents
		C \ C \ C \ C \ C \ C \ C \ C \ C \ C \
OK Cancel Help	Create Folder	🗇 c:

Slika 1 Prozor za definiranje direktorija u kojem će se nalaziti proračun (projekt)

Potrebno je odabrati naziv projekta i lokaciju na kojoj će se projekt nalaziti. U ovom slučaju je naziv projekta – *Primjer* na *C disku* u folderu *Vježba2*.

Slika 3

Sada je potrebno provjeriti pod *Options* da li je postavljen SI mjerni sustav (kod prvog korištenja je obično US Customary).

Nakon toga je potrebno definirat geometriju vodotoka što se postiže odabirom *Edit – Geometric Data* iz glavnog izbornika te se javlja prozor (Slika 4).

Slika 4 prozor za definiranje geometrije korita

Odabere se *River Reach* te se pojavi olovka kojom je potrebno definirati pravac te ga imenovati. Preporuka je povući liniju iz gornjeg lijevog u donji desni ugao. Za kraj linije je potrebno dvaput kliknuti. U idućem koraku treba definirat stacionažu (opcija RS u gornjim ikonicama). Strelicom se dođe na gornji lijevi dio korita (uzvodni kraj) i to se definirat kao stacionaža 10 000 m. Donji desni kraj korita (nizvodni kraj) se može definirati kao stacionaža 0 m.

Sada je potrebno definirati oblik korita te se bira opcija *Cross Section* nakon čega se otvara prozor za definiranje geometrije korita te treba odabrati *Options – Add new Cross Section* čime se otvara mogućnost za definiranje geometrije poprečnog presjeka. Dovoljno je definirati uzvodni i nizvodni profil jer smo pretpostavili jednoliko pravokutno korito. Prozor

kojim je definiran uzvodni profil na stacionaži 10 000 m se može ispuniti na način kako je prikazano na slici 5 a nizvodni na način kako je prikazano na slici 6. Ostali profile na svakih sto metara će biti interpolirani. U ovom primjeru je osim pravokutnog korita nadodana i inundacija čime se izbjegavaju eventualni problemi sa nestabilnošću numeričkog postupka. Podatak *Downnstream Reach Lenghts* označava udaljenost od profila za kojeg se upisuje geometrija do prvog idućeg nizvodnog profila kojem se upisuje geometrija što je u ovom slučaju 10 000 m. Podaci *Cross Section Coordinates* definiraju poprečni presjek korita u x-z ravnini.

🕆 Cross Section I	Data - ¥jezba-2					
Exit Edit Options	; Plot Help					
River: vjezba	•	Apply Data 🙀	🤝 + 🖚			
Reach: HEC-RAS 💌 River Sta.: 10000 💌 \downarrow 🕇						
Description						
Del Row	Ins Row	Downstream Reach L	engths			
Cross Section	n Coordinates	LOB Channel	ROB			
Station	Elevation 🔺	10000 10000	10000			
1 0	22.5	Manning's n Value:				
2 10	12.5	LOB Channel	ROB			
3 30	12.5	0.02 0.02	0.02			
4 30.01	2.5		1. 1 ²			
5 80.01	2.5	Main Channel Bank a	dations			
6 80.02	12.5		дпі Балк			
7 100	12.5	30 80.02				
8 110	22.5	Cont\Exp Coefficient (Stea	dy Flow) 😫			
9		Contraction E:	(pansion			
10		0.1 0.3				
11						
Edit Chatian Elevation	o Data (m)					

River: vjezba 🔽 Apply Data 🙀 🖵 + 🚥							
Reach: HEC-RAS 💌 River Sta.: 0 💌 🖡 🕇							
Desc	ription						
De	el Row	Ins Ro	w	Dowr	nstream F	leach L	engths.
	Cross Section	n Coordinates		LOB	Cha	nnel	ROB
	Station	Elevation		100	100		100
-	0	20		Ma	inning's n	Values	12
2	10	10		LOB	Cha	nnel	ROB
3	30	10		0.02	0.02		0.02
4	30.01	0			Channel	Dauli C	tellene.
5	80.01	0		Main	Channel	bank s	tations
6	80.02	10		DO LEILO			yrit Darik
- 7	100	10		30		80.02	
8	110	20		Cont\Exp I	Coefficier	nt (Stea	dy Flow) 🗳
9				Contra	otion	E>	pansion
10				0.1		0.3	
11			-				

Slika 5 Definirana geometrija uzvodnog profila

Slika 6 Definirana geometrija nizvodnog profila

Na ovaj način je definirana širina korita od 50 m (udaljenost između točke 4 i 5) definiran je pad od 2.5 m što će na udaljenosti od 10 000 m dati I_0 = 0.00025, definiran je Manningov koeficijent hrapavosti n = 0.02 za glavno korito (Channel) kao i za lijevu (LOB) i desnu (ROB) inundaciju. Nakon što se unesu podaci potrebno je odabrati opciju *Apply data* kako bi se upisani podaci unijeli u filove iz kojih HEC-RAS uzima podatke za proračun. I u buduće će trebati nakon svakog unosa/izmjene geometrije ili početnih i rubnih uvjeta odabrati opciju *Apply data* kako bi izmjene postale važeće.

Interpolacija profila na svakih 100 m se provodi opcijom *Tools – XS Interpolation – Within a reach* (Slika 7) gdje se nakon popunjavanja tablice na prikazani način odabite *Interpolate XS*.

XS Interpolati	ion by F	Reach					
River:	vjezba						
Reach:	HEC-R	HEC-RAS					
Upstream Riv S	Sta:	10000	•				
Downstream R	iv Sta:	0	-				
Maximum Dist	ance be	tween XS's:		100			
Cut Line GIS C Linearly in (only avai G Generate (will be rep	Coordina terpolate lable wh for displa positione	ites : cut lines from b en bounding XS ay as perpendici :d as cross secti	oounding XS's i's are Georef ular segments ion data is ch	erenced) to reach inv anged)	L vert		
Decimal places	: in interp	oolated Sta/Ele	v:	0.000	•		
Delete Interpolated XS's Interpolate XS's							
				Clos	se		
Enter max dista	nce betv	veen interp XSs.					

Slika 7 Interpolacija profila

Time je zadana geometrija korita te se može zapisat pod nekim odabranim imenom. Nakon zapisa geometrije prozor se može zatvoriti te se vraćamo na glavni izbornik.

Idući korak je upisivanje nestacionarnih rubnih uvjeta što se postiže odabirom iz glavnog izbornika *Edit – Unsteady Flow data* te može počet unos početnih i rubnih uvjeta.

Na slici 8 je prikazan unos početnog protoka na stacionaži 10 000 u iznosu od $Q = 50 \text{m}^3/\text{s}$.

🛵 Unsteady Flow Data - vjezba2-nestacionarno	_D×
File Options Help	
Boundary Conditions Initial Conditions	Apply Data
Initial Flow Distribution Method	
O Use a Restart File Filename:	E
 Enter Initial flow distribution 	
Locations of Flow	/ Data Changes
River: vjezba 💌	Add Multiple
Reach: HEC-RAS 💌 River Sta.: 1	0000 Add A Flow Change Location
River Reach RS	Initial Flow
1 vjezba HEC-RAS 10000	50
Initial Elementian of Charges Access	
Initial Elevation of Storage Areas	li se um la c
1 Storage Area	Initial Elevation

Slika 8 Prozor za unos početnih i rubnih uvjeta – upisan početni uvjet

LUnsteady Flow Data - vjezba2-nestacionarno							
Boundary Conditions Initial Conditions Apply Data							
	Select	Location for	Boundary Condition				
River: vjezba	•						
Reach: HEC-RAS	💌 Ri	ver Sta.:	10000 💌 Add a Bo	oundary Condition Location			
Boundary Condition Types							
Stage Hydrograph	Flow Hydr	ograph	Stage/Flow Hydr.	Rating Curve			
Normal Depth	Lateral Infl	ow Hydr.	Uniform Lateral Inflow	Groundwater Interflow			
T.S. Gate Openings	Elev Control	led Giates	Navigation Dams	IB Stage/Flow			
Rules							
River	Reach	RS	Boundary Condition Type				
1 vjezba	HEC-RAS	10000	Stage/Flow Hydr.				
2 vjezba	HEC-RAS	0	Normal Depth				

Slika 9 Rubni uvjeti

Slika 9a Rubni uvjet – protok i razina u uzvodnom profilu

Na slici 9 i 9a su prikazani rubni uvjeti pri čemu je na uzvodnom profilu (stacionaža 10000) definiran i protok i razina u funkciji vremena (vrijednosti su prikazane na slici 9a i 10) dok je na nizvodno profile definirana normalna dubina. Prilikom definiranja da je normalna dubina rubni uvjet potrebno je upisati i pad energetske linije te se u ovom slučaju može upisati pad dna kanala (I = 0.00025).

Nakon što su zadani početni i rubni uvjeti potrebno ih je zapisati (pospremiti – File – Save unsteady flow data) te se može provesti proračun odabirući Run – Unsteady flow analysis (slika 11).

age a	nd Flo	w Hy	drogra	ph	age and Flow Hydrograph								
		Biv	er: vjezb	a Reach:H	IEC-RAS	RS:	10000						
C. Bood from DCC before simulation Select DSS file and Path													
nea													
File:													
Stag	e												
Flow	Flow												
Enter Table Data time interval: 10 Minute													
Select/Enter the Data's Starting Time Beference													
01	Use Simulation Time: Date: Time: 0												
0	C Final Chart Time: Date: 1												
	Med 30	arti	me.	Dat	с.				ic.				
No.	Ordina	tes	Inter	polate Missir	ng Values	:	Del R	ow	Ins Re	ow			
		_		Hudrod	ranh Dat			_		_			
		Dai	e	Simulation	n Timel	Sb	але		Flow				
				íhou	sl	lí	n)	Ír	n3/s1				
1	29D)	ec18	99 2400	00:0	0 3	.67	,	50					
2	30D	ec18	99 0010	00:1	0 3	3.68		51.75					
3	30D)	ec18	99 0020	00:2	0 3	3.69		53.5					
4	30D	ec18	99 0030	00:3	IO 3	3.71		55.2	5				
5	30D	ec18	99 0040	00:4	0 3	.72		57.					
6	30D	ec18	99 0050	00:5	i0 3	.73		58.7	5				
- 7	30D	ec18	99 01 00	01:0	0 3	.74		60.5					
8	30D	ec18	99 0110	01:1	0 3	.75		62.2	5				
9	30D	ec18	99 01 20	01:2	:0 3	.76		64.					
10	30D	ec18	99 01 30	01:3	10 3	1.78		65.7	5				
11	30D	ec18	99 01 40	01:4	0 3	.79		67.5					
12	30D	ec18	99 0150	01:5	0 3	1.8		65.7	5				
13	30D	ec18	99 0200	02:0	0 3	3.81		64.					
14	30D	ec18	99 0210	02:1	0 3	3.82		62.2	5				
15	30D	ec18	39 0220	02:2	<u>.u</u> 3	3.83		60.5					
16	0D	30Dec1899 0230		02:3	0 3	3.85		58.75					
1/	0D	30Dec1899 0240		02:4	0 3	3.86		07. EE 0	-				
18	300	30Dec1899 0250		02:5	0 3	3.87		50.2	5				
- 19	200	30Dec1899.0300		03:0		3.88 2.00		51.7	5				
20	300	ec18 ec19	99.0310	03:1	0 3	100 1904		50	5				
22	300	ec19	99.0320	03.2	0			50.					
23	300	ec18	99.0340	03.3	.0								
Min El	nw:	0010	00 0040	Multinlier	- I								
					1				_				
				DI-LD-L-		0	V		Courses	- 1 C			

Płot Data OK Cancel Slika 10 Razina i protok u uzvodnom profilu u funkciji vremena (uzvodni rubni uvjet zadan dijagramom na početku primjera)

Plan : Plan 02	Short ID V2
Geometry File :	Vjezba-2
Unsteady Flow File :	vjezba2-nestacionarno
Programs to Run Geometry Preprocessor Unsteady Flow Simulation Post Processor	Plan Description :
Simulation Time Window Starting Date: Ending Date:	Starting Time: 0 Ending Time: 3:00
Computation Settings Computation Interval: 10 Sec Computation Level Output	Hydrograph Output Interval: 1 Minute 💌 Detailed Output Interval: 1 Minute 💌
DSS Output Filename: g:\vjez	ba2-primjerHEC.dss u: "Options/Mixed Flow Options")
	Compute

Slika 11 Pokretanje simulacije

Nakon što program izračuna parametre nestacionarnog tečenja u zadanom primjeru, sa opcijom *View* iz glavnog izbornika se mogu pregledati dobiveni rezultati.

Dijagram protoka i razina na najnizvodnijem profilu dobiven simulacijom je prikazan na slici 12. Potrebno je uočiti bitnu razliku između uzvodnog rubnog uvjeta (Slika 9a) i dobivenih vrijednosti na najnizvodnijem profilu.

Slika 12 Izračunate razine i protoci u funkciji vremena

Na isti način se unose i parametri koji su zadani u konkretnom primjeru svakom studentu. Nastavak rada ovisi o vašoj vlastitoj kreativnosti i inženjerskoj znatiželji.