

Ministry of Interior - Italian Fire Service Coordination team for short term countermeasures

vademecum STOP

SHORING TEMPLATES AND OPERATING PROCEDURES FOR THE SUPPORT OF BUILDINGS DAMAGED BY EARTHQUAKES

PROJECT DEVELOPMENT OF RAPID HIGHLY-SPECIALIZED OPERATIVE UNITS FOR STRUCTURAL EVALUATION DRHOUSE

Ministry of Interior

Italian Fire Service

NCP Coordination team for short term countermeasures

University of Udine

DCFA Department of Chemistry, Physics and Environment **SPRINT** Safety and Protection Intersectoral Laboratory

The VADEMECUM STOP[©] has been studied and edited by a specific working group for the Italian Fire Service, in order to standardize the short term countermeasures realized by Italian Fire Service personnel. Publishing by others is forbidden (with or without changes).

The utilization of the VADEMECUM STOP $^{\odot}$ is free, provided that the Italian Fire Service is cited as owner. The Italian Fire Service can not be held responsible for the incorrect usage of the VADEMECUM STOP $^{\odot}$.

Cite as:

S. Grimaz (coord.), M. Cavriani, E. Mannino, L. Munaro, M. Bellizzi, C. Bolognese, M. Caciolai, A. D'Odorico, A. Maiolo, L. Ponticelli, F. Barazza, P. Malisan, A. Moretti (2010). Vademecum STOP. Shoring templates and operating procedures for the support of buildings damaged by earthquakes. Italian Fire Service, Ministry of Interior. Rome.

© CNVVF - www.vigilfuoco.it Edition with May 2010 revisions.

Ministry of Interior - Italian Fire Service Coordination team for short term countermeasures

vademecum STOP

SHORING TEMPLATES AND OPERATING PROCEDURES FOR THE SUPPORT OF BUILDINGS DAMAGED BY EARTHQUAKES

Abruzzo earthquake 2009 Coordination team for short term countermeasures (NCP)

WORKING GROUP FOR THE STOP MANUAL

Under the supervision of Sergio Basti Central director for emergency and urgent technical rescue

> coordinator: Stefano Grimaz University of Udine

Marco Cavriani, Eros Mannino, Loris Munaro, Mario Bellizzi, Ciro Bolognese, Mauro Caciolai, Andrea D'Odorico, Alberto Maiolo, Luca Ponticelli Italian Fire Service

with the contribute of: Fausto Barazza, Petra Malisan, Alberto Moretti University of Udine

April 2010

VADEMECUM STOP

TIMBER RAKER SHORES

ABRUZZO EARTHQUAKE 2009 COORDINATION TEAM FOR TEMPORARY WORKS

WORKING GROUP FOR THE VADEMECUM STOP under the supervision of Sergio Basti - Central director for emergency and urgent technical rescue manual licensed by note no. EM3064/5001-11 dated 2009-06-15

S.Grimaz (coordinator) L.Munaro, M.Cavriani, E.Mannino, C.Bolognese, M.Caciolai, L.Ponticelli, M.Bellizzi, A. D'Odorico, A.Maiolo

> With the contribute of: F.Barazza, P.Malisan, A.Moretti

Translated by: L. Ponticelli, S. La Mendola, E. Gissi and Keith Bellamy Section Leader, Urban Search & Rescue Hampshire Fire and Rescue Service, UK

TIMBER RAKER SHORES: selection criteria

Ministry of Interior – CNVVF, Italian National Fire Service Coordination team for temporary works <u>Shoring Templates and Operating Procedures</u> for the support of buildings damaged by earthquakes

STOP-PR

NOTE: WALL RESTRAINING CAN BE ALSO DONE BY OTHER TECHNIQUES LIKE STEEL WIRE ROPE TIE BACKS. THE USE OF STEEL WIRE ROPE TIE BACKS SHALL BE PREFERRED WHEN THE DAMAGED WALL ABUTS ON A NARROW STREET.

SOLID SOLE RACKERS: general recommendations

STOP-PR/B

Table 2 - Main solid sole raker dimensions (cm x cm) for the type R1

R1 H 2.0-3.0 m	wall thickness s _m		≤ 0 .	.6 m		0.6 – 1.0 m					
seismic class (s	seismic class (see Annex 1)		ss A	class B		class A		class B			
sole length B	sole length B		2.5 m	1.5 m	2.5 m	1.5 m	2.5 m	1.5 m	2.5 m		
span D≤1.5 m		13 x 13	13 x 13	13 x 13	13 x 13	15 x 15	13 x 13	13 x 13	13 x 13		
shores D	1.5 <d≤2.0 m<="" td=""><td>15 x 15</td><td>13 x 13</td><td>13 x 13</td><td>13 x 13</td><td>18 x 18</td><td>15 x 15</td><td>15 x 15</td><td>13 x 13</td></d≤2.0>	15 x 15	13 x 13	13 x 13	13 x 13	18 x 18	15 x 15	15 x 15	13 x 13		

If no Annex 1 is provided, seismic class A should be used

	Other elements						
sole	same as the main raker						
wall plate	same as the main raker						
stiffening beams	2 lengths of 2.5 x 12 cm screwed/nailed on the struts by 3 screws Ø5 x 100 mm or by 3 nails L = 80 mm each end						
diagonal braces	lengths of 2.5 x 12 cm screwed/nailed by 2 screws Ø5 x 100 mm or by 3 nails L = 80 mm each end						
horizontal braces	lengths of 8 x 8 cm screwed/nailed by 2 screws Ø6 x 160 mm or by 3 nails L = 150 mm each end						
stringers	lengths of 5 x 20 cm with 1 m as the max distance between centres placed on the continuous parts of the wall						

CORRECT ANGLE OF THE MAIN RAKER

range of correct angle for the main raker

SOLID SOLE RACKERS: general recommendations

Table 3 - Main solid sole raker dimensions (cm x cm) for the type R2

R2 H 3.0-5.0m	wall thickness s _m		≤0.6 m				0.6 – 1.0 m				
seismic class	(see Annex 1)	clas	ss A	class B		class A		class B			
sole length B	sole length B		3.5 m	2.5 m	3.5 m	2.5 m	3.5 m	2.5 m	3.5 m		
	D≤1.0 m	13 x 13	13 x 13	13 x 13	13 x 13	15 x 15	15 x 15	15 x 15	13 x 13		
span	1.0 <d≤1.5 m<="" td=""><td>15 x 15</td><td>15 x 15</td><td>15 x 15</td><td>13 x 13</td><td>18 x 18</td><td>18 x18</td><td>15 x 15</td><td>15 x 15</td></d≤1.5>	15 x 15	15 x 15	15 x 15	13 x 13	18 x 18	18 x18	15 x 15	15 x 15		
shores D	1.5 <d≤2.0 m<="" td=""><td>18 x 18</td><td>15 x 15</td><td>15 x 15</td><td>15 x 15</td><td>20 x 20</td><td>18 x 18</td><td>18 x 18</td><td>18 x 18</td></d≤2.0>	18 x 18	15 x 15	15 x 15	15 x 15	20 x 20	18 x 18	18 x 18	18 x 18		
	2.0 <d≤2.5 m<="" td=""><td>18 x 18</td><td>18 x 18</td><td>18 x 18</td><td>15 x 15</td><td>n.a.</td><td>18 x 18</td><td>20 x 20</td><td>18 x 18</td></d≤2.5>	18 x 18	18 x 18	18 x 18	15 x 15	n.a.	18 x 18	20 x 20	18 x 18		

n.a. - not avalilable, specific design required

If no Annex 1 is provided, seismic class A should be used

Other elements						
lower raker	same as the main raker					
sole	same as the main raker					
wall plate	same as the main raker					
stiffening beams	2 lengths of 5 x 20 cm screwed/nailed on the struts by 3 screws Ø5 x 100 mm or by 3 nails L = 100 mm each end					
braces	lengths of 5 x 20 cm screwed/nailed by 3 screws Ø5 x 100 mm or by 3 nails L = 100 mm each end or lengths of 8 x 8 cm screwed/nailed by 2 screws Ø6 x 160 mm or by 2 nails L = 150 mm each end					
horizontal braces	lengths of 8 x 8 cm screwed/nailed by 2 screws Ø6 x 160 mm or by 2 nails L = 150 mm each end					
stringers	lengths of 5 x 20 cm with 1 m as the max distance between centres placed on the continuous parts of the wall					

CORRECT ANGLE OF THE MAIN RAKER

range of correct angle for the main raker

STOP-PR/B

STOP-PR/B

SOLID SOLE RACKERS: general recommendations

Table 4 - Main solid sole raker dimensions (cm x cm) for the type R3

R3 H 5.0-7.0 m	wall thickness s _m		≤ 0 .	6 m		0.6 m – 1.0 m				
seismic class (see Annex 1)		class A		class B		class A		class B		
sole length B		3.5 m	4.5 m	3.5 m	4.5 m	3.5 m	4.5 m	3.5 m	4.5 m	
span D≤1.0 m		20 x 20	20 x 20	20 x 20	20 x 20	20 x 20	20 x 20	20 x 20	20 x 20	
shores D	1.5 <d≤2.0 m<="" td=""><td>20 x 20</td><td>20 x 20</td><td>20 X 20</td><td>20 x 20</td><td>n.a.</td><td>20 x 20</td><td>n.a.</td><td>20 x 20</td></d≤2.0>	20 x 20	20 x 20	20 X 20	20 x 20	n.a.	20 x 20	n.a.	20 x 20	

n.a - not avalilable, specific design required

If no Annex 1 is provided, seismic class A should be used

Other elements						
lower raker	same as the main raker					
sole	same as the main raker					
Wall plate	same as the main raker					
stiffening beams	2 lengths of 5 x 20 cm screwed/nailed on the struts by 3 screws Ø5 x 100 mm or by 3 nails L = 100 mm each end					
braces	lengths of 5 x 20 cm screwed/nailed by 3 screws Ø5 x 100 mm or by 3 nails L = 100 mm each end or lengths of 8 x 8 cm screwed/nailed by 2 screws Ø6 x 160 mm or by 2 nails L = 150 mm each end					
horizontal braces	lengths of 8 x 8 cm screwed/nailed by 2 screws Ø6 x 160 mm or by 2 nails L = 150 mm each end					
stringers	lengths of 5 x 20 cm with 1 m as the max distance between centres placed on the continuous parts of the wall					

CORRECT ANGLE OF THE MAIN RAKER

range of correct angle for the main raker

NOTE: both (a) and (b) are possible, but (a) is preferred **WARNING:** the joint notch should never go deeper than s/4

STOP-PR/B

SOLID SOLE RAKERS: anchoring solutions for the base

STAKES FOR ANCHORING	Я	81	F	32	R3		
wall thickness s _m	≤0.6m	0.6 <s<sub>m≤1.0m</s<sub>	≤0.6m	0.6 <s<sub>m≤1.0m</s<sub>	≤0.6m	0.6 <s<sub>m≤1.0m</s<sub>	
seismic class A	1 Ø26 every 50 cm (S)	1 Ø26 every 40 cm (S)	1 Ø26 every 30 cm (S)	1 Ø26 every 25 cm (S) or 40 cm on two rows (A) o (D)	1 Ø26 every 12.5 cm (S) or every 25 cm on two rows (A) o (D)	1 Ø26 every 10 cm (S) or every 20 cm on two rows (A) o (D)	
seismic class B	1 Ø26 every 60 cm (S)	1 Ø26 every 50 cm (S)	1 Ø26 every 40 cm (S)	1 Ø26 every 30 cm (S) or 50 cm on two rows (A) o (D)	1 Ø26 every 15 cm (S) or every 30 cm on two rows (A) o (D)	1 Ø26 every 12.5cm (S) or every 25 cm on two rows (A) o (D)	

NOTE: given the same distance between the stakes, when the (S) solution is allowed, also (A) and (D) are; if the (A) solution is allowed, also (D) is. If no Annex 1 is provided, seismic class A should be used

STOP-**PR**/B

SOLID SOLE RAKERS: general instructions

TIMBER SOLID SOLE RAKER SHORES

Field of application

These solutions shall be used to support buildings damaged by earthquakes.

General assumptions

These raker shores shall be employed to restrain load bearing masonry walls not exceeding 1m thick. Two solutions are proposed: the tables R1, R2 and R3 shall be used for both parallel or converging rakers having the same height H.

"H" is defined as the difference in height between the sole lower point and the raker upper edge. This edge should be placed at a corresponding insertion point on the other side of the restrained wall, for example a slab, a vault, an arch, or a perpendicular wall, in order to effectively transfer the forces to the raker shore.

Given the height "H", the raker shore type R1, R2, or R3 is therefore chosen using table 1 at page 2/15. When H>7.0m, using laminated timber or steel instead of ordinary timber is recommended, and specific design of the raker shore is required.

Given the thickness of the restrained wall "s_m" and the seismic class (see Annex 1), once the span "D" and the sole length "B" are chosen, the raker shore shall be sized using table 2 for R1 type, table 3 for R2 type, table 4 for R3 type.

Many raker shore elements share the same section size to ease timber procurement and simplify the shore's connections.

On page 6/15 main construction critical considerations are listed, and corresponding solutions are showed. Some construction details of the shore's connections are proposed.

On page 7/15 two kinds of construction details for anchoring of the sole are shown.

In particular the sole anchoring should:

- prevent the upward displacement of the sole-wall plate node;

- prevent the outward displacement of the sole-raker node.

WARNING

All the provided dimensions are intended as minimum values. During the construction phase, thicker sections can be used, if available.

FLYING RAKERS: general recommendations

Table 8 - Main flying raker dimensions (cm x cm) for the type R1

R1 H 2.0-3.0m	wall thickness s _m		≤ 0 .	6 m			0.6 –	1.0 m	
seismic class (s	see Annex 1)	clas	ss A	class B		class A		class B	
sole length B	sole length B		2.5 m	1.5 m	2.5 m	1.5 m	2.5 m	1.5 m	2.5 m
span	D≤1.5 m	13 x 13	13 x 13	13 x 13	13 x 13	15 x 15	13 x 13	13 x 13	13 x 13
shores D	1.5 <d≤2.0 m<="" td=""><td>15 x 15</td><td>13 x 13</td><td>13 x 13</td><td>13 x 13</td><td>18 x 18</td><td>15 x 15</td><td>15 x 15</td><td>13 x 13</td></d≤2.0>	15 x 15	13 x 13	13 x 13	13 x 13	18 x 18	15 x 15	15 x 15	13 x 13

If no Annex 1 is provided, seismic class A should be used

Other elements						
sole	same as the main raker					
wall plate	same as the main raker					
stiffening beams	2 lengths of 2.5 x 12 cm screwed/nailed on the struts by 3 screws Ø5 x 100 mm or by 3 nails L = 80 mm each end					
diagonal braces	lengths of 2.5 x 12 cm screwed/nailed by 2 screws Ø5 x 100 mm or by 3 nails L = 80 mm each end					
horizontal braces	lengths of 8 x 8 cm screwed/nailed by 2 screws Ø6 x 160 mm or by 3 nails L = 150 mm each end					
stringers	lengths of 5 x 20 cm with 1 m as the max distance between centres placed on the continuous parts of the wall					

CORRECT ANGLE OF THE MAIN RAKER

range of correct angle for the main raker

FLYING RAKERS: general recommendations

Table 9 - Main flying raker dimensions (cm x cm) for the type R2

R2 H 3.0-5.0 n	n N	wall thickness ^s m		≤0).6 m		0.6 – 1.0 m					
seismic class (see Annex 1)			clas	ss A	class B		class A		class B			
sole length B		2.5 m	3.5 m	2.5 m	3.5 m	2.5 m	3.5 m	2.5 m	3.5 m			
	D≤1.0	m	13 x 13	13 x 13	13 x 13	13 x 13	15 x 15	15 x 15	15 x 15	13 x 13		
span	1.0 <d≤< td=""><th>≦1.5 m</th><td>15 x 15</td><td>15 x 15</td><td>15 x 15</td><td>13 x 13</td><td>18 x 18</td><td>18 x18</td><td>15 x 15</td><td>15 x 15</td></d≤<>	≦1.5 m	15 x 15	15 x 15	15 x 15	13 x 13	18 x 18	18 x18	15 x 15	15 x 15		
shores D	1.5 <d⊴< td=""><th>≦2.0 m</th><td>18 x 18</td><td>15 x 15</td><td>15 x 15</td><td>15 x 15</td><td>20 x 20</td><td>18 x 18</td><td>18 x 18</td><td>18 x 18</td></d⊴<>	≦2.0 m	18 x 18	15 x 15	15 x 15	15 x 15	20 x 20	18 x 18	18 x 18	18 x 18		
	2.0 <d≤< td=""><th>≦2.5 m</th><td>18 x 18</td><td>18 x 18</td><td>18 x 18</td><td>15 x 15</td><td>n.a.</td><td>18 x 18</td><td>20 x 20</td><td>18 x 18</td></d≤<>	≦2.5 m	18 x 18	18 x 18	18 x 18	15 x 15	n.a.	18 x 18	20 x 20	18 x 18		

n.a. - not avalilable, specific design required

If no Annex 1 is provided, seismic class A should be used

Other elements						
lower raker	same as the main raker					
sole	same as the main raker					
wall plate	same as the main raker					
stiffening beams	2 lengths of 5 x 20 cm screwed/nailed on the struts by 3 screws Ø5 x 100 mm or by 3 nails L = 100 mm each end					
braces	lengths of 5 x 20 cm screwed/nailed by 3 screws Ø5 x 100 mm or by 3 nails L = 100 mm each end or lengths of 8 x 8 cm screwed/nailed by 2 screws Ø6 x 160 mm or by 2 nails L = 150 mm each end					
horizontal braces	lengths of 8 x 8 cm screwed/nailed by 2 screws Ø6 x 160 mm or by 2 nails L = 150 mm each end					
stringers	lengths of 5 x 20 cm with 1 m as the max distance between centres placed on the continuous parts of the wall					

CORRECT ANGLE OF THE MAIN RAKER

range of correct angle for the main raker

FLYING RAKERS: general recommendations

Table 10 - Main flying raker dimensions (cm x cm) for the type R3

R3 H 5.0-7.0 m	wall thickness s _m		≤ 0 .	6 m			0.6 m -	– 1.0 m	
seismic class (see Annex 1)		class A		class B		class A		class B	
sole lenght B		3.5 m	4.5 m	3.5 m	4.5 m	3.5 m	4.5 m	3.5 m	4.5 m
span D≤1.0 m		20 x 20	20 x 20	20 x 20	20 x 20	20 x 20	20 x 20	20 x 20	20 x 20
shores D	1.5 <d≤2.0 m<="" td=""><td>20 x 20</td><td>20 x 20</td><td>20 X 20</td><td>20 x 20</td><td>n.a.</td><td>20 x 20</td><td>n.a.</td><td>20 x 20</td></d≤2.0>	20 x 20	20 x 20	20 X 20	20 x 20	n.a.	20 x 20	n.a.	20 x 20

n.a. - not avalilable, specific design required

If no Annex 1 is provided, seismic class A should be used

Other elements					
lower raker	same as the main raker				
sole	same as the main raker				
wall plate	same as the main raker				
stiffening beams	2 lengths of 5 x 20 cm screwed/nailed on the struts by 3 screws Ø5 x 100 mm or by 3 nails L = 100 mm each end				
braces	lengths of 5 x 20 cm screwed/nailed by 3 screws Ø5 x 100 mm or by 3 nails L = 100 mm each end or lengths of 8 x 8 cm screwed/nailed by 2 screws Ø6 x 160 mm or by 2 nails L = 150 mm each end				
horizontal braces	lengths of 8 x 8 cm screwed/nailed by 2 screws Ø6 x 160 mm or by 2 nails L = 150 mm each end				
stringers	lengths of 5 x 20 cm with 1 m as the max distance between centres placed on the continuous parts of the wall				

CORRECT ANGLE OF THE MAIN RAKER

range of correct angle for the main raker

© CNVVF- Using allowed under CNVVF supervision

STOP-PR/S

FLYING RAKERS: anchoring solutions for the base

Table 12 - Distance d between the stakes

STAKES FOR ANCHORING	R1		F	82	R3		
wall thickness s _m	≤0.6m	0.6 <s<sub>m≤1.0m</s<sub>	⊴0.6m 0.6 <s<sub>m≤1.0m</s<sub>		⊴0.6m	0.6 <s<sub>m≤1.0m</s<sub>	
seismic class A	1 Ø26 every 50 cm (S)	1 Ø26 every 40 cm (S)	1 Ø26 every 30 cm (S)	1 Ø26 every 25 cm (S) or 40 cm on two rows (A) o (D)	1 Ø26 every 12.5 cm (S) or every 25 cm on two rows (A) o (D)	1 Ø26 every 10 cm (S) or every 20 cm on two rows (A) o (D)	
seismic class B	1 Ø26 every 60 cm (S)	1 Ø26 every 50 cm (S)	1 Ø26 every 40 cm (S)	1 Ø26 every 30 cm (S) or 50 cm on two rows (A) o (D)	1 Ø26 every 15 cm (S) or every 30 cm on two rows (A) o (D)	1 Ø26 every 12.5cm (S) or every 25 cm on two rows (A) o (D)	

NOTE: given the same distance between the stakes, when the (S) solution is allowed, also (A) and (D) are; if the (A) solution is allowed, also (D) is.

Solution for the base (2b)

STOP-PR/S

FLYING RAKERS: general instructions

TIMBER FLYING RAKER SHORES

Field of application

These solutions shall be used to support buildings damaged by earthquakes.

General assumptions

These raker shores shall be employed to restrain load bearing masonry walls not exceeding 1m thick. Two solutions are proposed: the tables R1, R2 and R3 shall be used for both "single point base" and "short solid sole base" shores having the same height H.

"H" is defined as the difference in height between the sole lower point and the main raker upper edge. This edge should be placed at a corresponding insertion point on the other side of the restrained wall, as for example a slab, a vault, an arch, or an perpendicular wall, in order to effectively transfer the forces to the raker shore.

Given the height "H", the raker shore type R1, R2, or R3 is therefore chosen using table 7 at page 9/15. When H>7.0m, using laminated timber or steel instead of ordinary timber is recommended, and specific design of the raker shore is required.

Given the thickness of the restrained wall " s_m " and the seismic class (see Annex 1), once the span "D" and the sole length "B" are chosen, the raker shore shall be sized using table 8 for R1 type, table 9 for R2 type, table 10 for R3 type.

Many raker shore elements share the same section size to ease timber procurement and simplify the shore's connections.

On page 13/15 main construction critical considerations are listed, and corresponding solutions are showed. Some construction details of the shore's connections are proposed.

On page 14/15 two kinds of construction details for anchoring of the sole are shown.

In particular the sole anchoring should prevent the sole from sliding.

WARNING

All the provided dimensions are intended as minimum values. During the construction phase, thicker sections can be used, if available.

INTENTIONALLY BLANK PAGE

VADEMECUM STOP

TIMBER WALL TO WALL SHORES (horizontal and sloped)

ABRUZZO EARTHQUAKE 2009 COORDINATION TEAM FOR TEMPORARY WORKS

WORKING GROUP FOR THE VADEMECUM STOP under the supervision of Sergio Basti - Central director for emergency and urgent technical rescue manual licensed by note no. EM3064/5001-11 dated 2009-06-15

S.Grimaz (coordinator) L.Munaro, M.Cavriani, E.Mannino, C.Bolognese, M.Caciolai, L.Ponticelli, M.Bellizzi, A. D'Odorico, A.Maiolo

> With the contribute of: F.Barazza, P.Malisan, A.Moretti

Translated by: L. Ponticelli, S. La Mendola, E. Gissi and Keith Bellamy Section Leader, Urban Search & Rescue Hampshire Fire and Rescue Service, UK

TIMBER WALLL TO WALL SHORES: general recommendations

HORIZONTAL SHORE: sizing

STOP-PC

Structural sketches

Table 1 – Horizontal shore: sizing of the main elements

Р	Minimum dimensions of UPRIGHTS, POSTS, CROSS BEAMS AND DIAGONAL TIMBERS								
F		Seismic	class A *		Seismic class B *				
Maximum width of the w to be supported: s _m ≤ 0.6 m		dth of the wall upported: 0.6 m	Maximum width of the wall to be supported: $0.6 \text{ m} < s_m \le 1.0 \text{ m}$		Maximum width of the wall to be supported: s _m ≤ 0.6 m		Maximum width of the wall to be supported: $0.6 \text{ m} < s_m \le 1.0 \text{ m}$		
Height H _{tot} (m)	Section (cmxcm)	Distance between the axes i (m)	Section (cmxcm)	Distance between the axes i (m)	Section (cmxcm)	Distance between the axes i (m)	Section (cmxcm)	Distance between the axes i (m)	
6m <h<sub>tot ≤9m</h<sub>	20 x 20	max 2.0	20 x 20	max 1.5	20 x 20	max 2.0	20 x 20	max 2.0	
3m <h<sub>tot ≤6m</h<sub>	18 x 18	max 2.0	20 x 20	max 2.0	15 x 15	max 2.0	18 x 18	max 2.0	
H _{tot} ≤3m	15 x 15	max 2.0	18 x 18	max 2.0	13 x 13	max 2.0	15 x 15	max 2.0	

(*) For the seismic classes see the Annex 1

If no Annex 1 is provided, seismic class A should be used

Secondary elements					
base	as the main elements				
locking elements (see page 7/14)	as the main elements				
ground cross beams	sections 15x15 cm or more				
cross beams	sections 10x10 cm				
secondary diagonal	boards $5x20 \text{ cm}$ screwed/nailed by 3 screws $Ø5x100 \text{ mm}$ or by 3 nails L = 100 mm each edge placed on both the sides of the principal diagonal				
stringers	boards 5 x 20 cm with 1 m as the max distance between centres placed on the continuous parts of the wall				
protective tables	boards 5x20 cm				

The dimensions in table 1 can be used for all the configurations showed on page 2/14

STOP-PC

HORIZONTAL SHORE: sizing

Table 2 - Sloped shore: sizing of the main elements

e	Minimum dimensions of UPRIGHTS, POSTS, CROSS BEAMS AND PRINCIPAL DIAGONAL TIMBERS								
3		Seismic	class A *		Seismic class B *				
	Maximum width of the wall to be supported: $s_m \le 0.6 \text{ m}$		Maximum width of the wall to be supported: 0.6 m < s _m ≤ 1.0 m		Maximum width of the wall to be supported: $s_m \le 0.6 \text{ m}$		Maximum width of the wall to be supported: 0.6 m < s _m ≤ 1.0 m		
Height H _{tot} (m)	Section (cmxcm)	Distance between the axes i (m)	Section (cmxcm)	Distance between the axes i (m)	Section (cmxcm)	Distance between the axes i (m)	Section (cmxcm)	Distance between the axes i (m)	
6m <h<sub>tot ≤9m</h<sub>	18 x 18	max 2.0	20 x 20	max 2.0	15 x 15	max 2.0	18 x 18	max 2.0	
3m <h<sub>tot ≤6m</h<sub>	15 x 15	max 2.0	18 x 18	max 2.0	15 x 15	max 2.0	15 x 15	max 2.0	

(*) For the seismic classes see the Annex 1

If no Annex 1 is provided, seismic class A should be used

Secondary elements					
as the main elements					
as the main elements					
sections 15x15 cm or more					
sections 10x10 cm					
boards $5x20 \text{ cm}$ screwed/nailed by 3 screws $Ø5x100 \text{ mm}$ or by 3 nails L = 100 mm each edge placed on both the sides of the principal diagonal					
boards 5 x 20 cm with 1 m as the max distance between centres placed on the continuous parts of the wall					
boards 5x20 cm					

The dimensions in table 2 can be used for all the configurations showed on page 3/14

TIMBER WALLL TO WALL SHORES: critical considerations

Critical consideration

Posts could punch through the supporting wall

Safety criteria:

Critical consideration

The supported structure could impact on the supporting wall.

Safety criteria:

if it is not possible to position the posts in line with perpendicular walls a 10x10 sections horizontal distribution substructure should be provided.

Safety criteria:

Plan

Plan

the principal diagonals and the posts should be

positioned in line with the floors.

Floors at the same height

Vertical section

Floors at different height

TIMBER WALLL TO WALL SHORES: safety instructions

Vertical section

Critical consideration

The wall to be supported could collapse during the shoring operations.

<u>Safety instruction</u>: build the modular elements of the shore in a safe zone

ASSEMBLING THE ELEMENTS

STOP-PC

STOP-PC

STOP-PC

STOP-PC

S C P

STOP-PC

STOP-PC

TIMBER WALLL TO WALL SHORES: assembling phases

Stage 1 – Building of the trellises

TIMBER WALL TO WALL SHORES: general instructions

STOP-PC

TIMBER WALL TO WALL SHORES

Field of application

The use of this procedure is allowed only with 9 m high masonry structures and only for wall thickness of 1 m. The maximum free height of the wall is 8 m.

The maximum distance between the wall to support and the supporting wall is 2 times the distance between two consecutive floors (h).

The supporting structure should be made of wood.

General assumptions

<u>The intervention is allowed only under the permission of local Authorities</u> because of the possibility of damage to the supporting building due to aftershocks. Check the solutions to the critical considerations shown on page 6/14.

Instructions for the use of the procedure

After the check of the site to be shored, define the type of the shore (P or S) on pages 1/14, 2/14 and 3/14.

On page 4/14 the table to size the parallel shape shore (P) is shown.

On page 5/14 the table to size the slope shape shore (S) is shown.

The sizing of the shore's elements is dependent on: the type of the shore (P o S), the total height of the wall to support (H_{tot}), the thickness of the wall to support (s_m) and of the seismic classification (see the Annex 1).

On the pages 6-7/14 the main critical considerations are shown.

On the pages 8-12/14 the details of the shore structure are shown.

VADEMECUM STOP

SHORES FOR APERTURES

ABRUZZO EARTHQUAKE 2009 COORDINATION TEAM FOR TEMPORARY WORKS

WORKING GROUP FOR THE VADEMECUM STOP under the supervision of Sergio Basti - Central director for emergency and urgent technical rescue manual licensed by note no. EM3064/5001-11 dated 2009-06-15

S.Grimaz (coordinator) L.Munaro, M.Cavriani, E.Mannino, C.Bolognese, M.Caciolai, L.Ponticelli, M.Bellizzi, A. D'Odorico, A.Maiolo

> With the contribute of: F.Barazza, P.Malisan, A.Moretti

Translated by: L. Ponticelli, S. La Mendola, E. Gissi and Keith Bellamy Section Leader, Urban Search & Rescue Hampshire Fire and Rescue Service, UK

SHORES FOR APERTURES: general recommendations STOP-SA External wall Internal wall h н S_m≥ Table 1 – Sizing of the elements (posts, struts and mid point beams) Sm ≤ 0.4 m 0.4 - 0.6 m 0.6 - 0.8 m 0.8 - 1.0 m double double double single double Width of loading slab f 10x10 8x8 8x8 8x8 10x10 f = 0m $0m < f \le 1m$ 13x13 10x10 10x10 10x10 13x13 L ≤1.0 m $1m < f \le 3m$ 18x18 13x13 13x13 13x13 13x13 15x15 15x15 15x15 18x18 $3m < f \le 5m$ "Tight" n.p. openings f = 0m13x13 10x10 13x13 13x13 13x13 $0m < f \le 1m$ 18x18 13x13 15x15 15x15 15x15 1.0 m<L≤1.5 m 18x18 18x18 18x18 18x18 $1m < f \le 3m$ n.p. $3m < f \le 5m$ 18x18 20x20 20x20 20x20 n.p. 13x13 f = 0m10x10 10x10 13x13 13x13 $0m < f \le 1m$ 15x15 13x13 13x13 13x13 15x15 1.5 m<L≤2.0 m $1m < f \leq 3m$ 20x20 15x15 15x15 18x18 18x18 "Large" $3m < f \le 5m$ 18x18 20x20 20x20 18x18 n.p. openings f = 0m18x18 13x13 15x15 18x18 18x18 2.0 m<L<3.0 m $0m < f \le 1m$ 20x20 15x15 18x18 18x18 20x20 20x20 20x20 $1m < f \le 3m$ n.p. n.p. n.p.

n.p. - not present: a specific design is needed

Other elements					
Braces	Planks 2.5 x 12 cm screwed/nailed on the struts by 3 screws Ø5x100 mm or by 3 nails L = 80 mm each edge for sections not bigger than 15x15 or Planks 5 x 20 cm screwed/nailed on the struts by 3 screws Ø5x100 mm or by 3 nails L = 100 mm each edge for sections bigger than 15x15				

WARNING:

If **d** > **L** no loading slab should be considered.

If the slab is ribbed parallel to the wall, the width of the loading slab should be safely assumed as 1m.

SHORES FOR APERTURES: general instructions

SHORES FOR APERTURES

Field of application

These shores can be used only on buildings damaged by earthquakes.

General assumptions

These shores transfer the loads from the damaged lintel to the remaining structure, through as much as possible, the previous load path.

In case of necessity, the shores can stiffen the openings. Appropriate bracing should be provided (see page 2/3).

To simplify, only square cross section timber is used.

Instructions for the use of this procedure

By using the dimensions of the opening (height "H" and width "L"), the width "s_m" of the wall and the length of the slab loading the lintel, it is possible to calculate the sizing of the system using table 1 on page 2/3.

Only if the width of the wall is less than 0.4 m, it is possible to use either the single or the double system (see the table1 on page 2/3).

WARNING

All the values should be intended as a minimum. Bigger timbers can be used if necessary.

INTENTIONALLY BLANK PAGE

VADEMECUM STOP

SHORES FOR SLABS AND BALCONIES

ABRUZZO EARTHQUAKE 2009 COORDINATION TEAM FOR TEMPORARY WORKS

WORKING GROUP FOR THE VADEMECUM STOP under the supervision of Sergio Basti - Central director for emergency and urgent technical rescue manual licensed by note no. EM3064/5001-11 dated 2009-06-15

S.Grimaz (coordinator) L.Munaro, M.Cavriani, E.Mannino, C.Bolognese, M.Caciolai, L.Ponticelli, M.Bellizzi, A. D'Odorico, A.Maiolo

> With the contribute of: F.Barazza, P.Malisan, A.Moretti

Translated by: L. Ponticelli, S. La Mendola, E. Gissi and Keith Bellamy Section Leader, Urban Search & Rescue Hampshire Fire and Rescue Service, UK

	L (m) i (m)	L ≤ 3.0m	3.0m < L ≤ 4.0m	4.0m < L ≤ 5.0m	5.0m < L ≤ 6.0m	6.0m < L ≤ 7.0m
-	1.0	13x13-[S1]	13x13-[S1]	13x13-[S2]	13x13-[S3]	13x13-[S3]
4 T	1.5	13x13-[S1]	13x13-[S2]	13x13-[S3]	15x15-[S3]	n.p.
VI ⊥	2.0	15x15-[S2]	15x15-[S2]	15x15-[S3]	n.p.	n.p.
	2.5	15x15-[S3]	n.p.	n.p.	n.p.	n.p.
Е			•			

S1 is not allowed if H > 4m.

4m<H≤6

The same sections used for the sketches S1 and S2 for $H \le 4m$ are allowed if properly braced (the bracing system can be implemented using planks 2.5 x 12 cm nailed on the uprights with 3 nails L = 80 mm in both directions).

 Table 2 – Sizing of the shore made with wooden beams and telescopic steel upright struts

 Cross section of the beams (cmxcm) – Class of the iron prop (see EN 1065) - [reference sketch]

	i (m) L (m)	L ≤ 3.0m	3.0m < L ≤ 4.0m	4.0m < L ≤ 5.0m	5.0m < L ≤ 6.0m	6.0m < L ≤ 7.0m
	1.0	13x13-C30-[S1]	13x13-C30-[S2]	13x13-E30-[S2]	13x13-E30-[S3]	13x13-E30-[S3]
∐ < 2 m	1.5	13x13-E30-[S1]	13x13-E30-[S2]	13x13-E30-[S3]	n.p.	n.p.
	2.0	15x15-E30-[S2]	15x15-C30-[S3]	n.p.	n.p.	n.p.
	2.5	15x15-E30-[S3]	n.p.	n.p.	n.p.	n.p.
	1.0	13x13-D40-[S1]	13x13-D40-[S2]	13x13-E40-[S2]	13x13-E40-[S3]	13x13-E40-[S3]
H=2.4 m	1.5	13x13-E40-[S1]	13x13-E40-[S2]	13x13-E40-[S3]	n.p.	n.p.
□= 3-4 III	2.0	15x15-E40-[S2]	15x15-E40-[S3]	n.p.	n.p.	n.p.
	2.5	15x15-E40-[S3]	n.p.	n.p.	n.p.	n.p.
	1.0	13x13-D50-[S1]	13x13-D50-[S2]	13x13-E50-[S2]	13x13-E50-[S3]	13x13-E50-[S3]
H= 4-5 m	1.5	13x13-E50-[S1]	13x13-E50-[S2]	13x13-E50-[S3]	n.p.	n.p.
	2.0	15x15-E50-[S2]	15x15-E50-[S3]	n.p.	n.p.	n.p.
	2.5	15x15-E50-[S3]	n.p.	n.p.	n.p.	n.p.

n.p. - not present: a specific design is needed

WARNING: fix the steel strut to the wooden beam with one nail for each hole on the end of the strut.

STOP-SB/S

SHORES FOR BALCONIES: general recommendations

Table 3 - Sizing of the wooden beams and the wooden uprights

	H ≤ 4 m									
L (m) i (m)	L ≤1.0m	1.0m <l≤1.5m< th=""><th>1.5m<l≤2.0m< th=""><th>2.0m<l≤3.0m< th=""></l≤3.0m<></th></l≤2.0m<></th></l≤1.5m<>	1.5m <l≤2.0m< th=""><th>2.0m<l≤3.0m< th=""></l≤3.0m<></th></l≤2.0m<>	2.0m <l≤3.0m< th=""></l≤3.0m<>						
1.0	13x13-[B2]	13x13-[B2]	13x13-[B2]	15x15-[B2]						
1.5	13x13-[B2]	13x13-[B2]	15x15-[B2]	n.p.						
2.0	13x13-[B2]	15x15-[B2]	n.p.	n.p.						
2.5	15x15-[B2]	n.p.	n.p.	n.p.						

n.p. - not present: a specific design is needed

If $4m < H \le 6m$, it is necessary to provide a bracing system (n. 2 planks 2.5 x 12 cm nailed on the uprights with 3 nails L = 80 mm in both directions).

Table 4 – Sizing of the wooden beams and of the steel stuts. Reference sketch [B2].	
(see EN 1065 for the classification of the steel struts)	

	L(m) i(m)	L ≤1.0m	1.0m <l th="" ≤1.5m<=""><th>1.5m<l th="" ≤2.0m<=""><th>2.0m<l th="" ≤3.0m<=""></l></th></l></th></l>	1.5m <l th="" ≤2.0m<=""><th>2.0m<l th="" ≤3.0m<=""></l></th></l>	2.0m <l th="" ≤3.0m<=""></l>
Hr 3 m	1.0	A30	B30	C30	E30
	1.5	B30	C30	E30	n.p.
H< 3 III	2.0	C30	E30	n.p.	n.p.
	2.5	C30	n.p.	n.p.	n.p.
H= 3-4 m	1.0	B40	C40	D40	E40
	1.5	C40	D40	E40	n.p.
	2.0	D40	E40	n.p.	n.p.
	2.5	D40	n.p.	n.p.	n.p.
	1.0	B50	C50	D50	E50
H= 4.5 m	1.5	C50	D50	E50	n.p.
H= 4-5 M	2.0	D50	E50	n.p.	n.p.
	2.5	D50	n.p.	n.p.	n.p.
To size the wooder	n beams see Table 3				

n.p. - not present: a specific design is needed

"solid" base

"soft" base

upright

SHORES FOR SLABS AND BALCONIES: steel telescopic struts

STOP-SB/S

General assumptions

Steel struts can only be used if:

• they are compliant to the EN 1065 standard;

• the provider is in possession of the conformity certification, relating to the above-mentioned technical rule, and issued by an official laboratory;

- the telescopic struts must come with a document or a manual that includes:
 - a brief description of the struts and their components, also stating their definition in accordance with the UNI EN 1065 standard;
 - · any useful direction for a proper end-use;
 - · the instructions relating to maintenance and storage;
 - reference to the test certificates required by the UNI EN 1065 standard;
 - · A provider's declaration of conformity to the DM 06/08/2004.

Check the class of the strut before using.

Every steel strut should be stamped as below:

- Conformity to the EN 1065 standard;

- Manufacturer
- Year of production;
- For the classification of the steel telescopic strut see EN 1065 (ex. C30, D40, E40, E50 ...).

S C P

SHORES FOR SLABS AND BALCONIES: general recommendations

STOP-SB/S

SHORES FOR SLABS - SINGLE LINE "S"

Main assumptions

This shore has been designed for clay-concrete floors, having a thickness equal to 1/25 of its span, and a distribution slab 4 cm thick, loaded according to the regulation in force for civil buildings. This shore has been sized assuming that the connections at the ends of the load bearing floor's members can prevent vertical movement while allowing rotation.

General recommendations

On page 2/10 three solutions for supporting the floor are proposed (S1, S2 and S3), depending on the floor span and on the chosen spacing between shores.

It must be noted that the span "L" must be intended as the distance between supports, which should be measured once that the floor support structure direction has been identified. To this aim, the main load bearing members should be carefully and correctly identified, by removing sections of plaster, if necessary.

It must be noted that, for intermediate floors, the utilization of the "S" solution requires that all the lower floors are shored up following the sequence shown on page 1/10. In any case, the solidity of the lower structure support plane should be assessed.

Once that the material of the supporting structure has been defined (entirely in wood or wood with steel struts), the span "L" and the distance between floors "H" should be measured. For wooden structures, the design is carried out according to tab. 1 which gives the dimensions for the uprights and for the supporting beam as well as the type of shoring system depending on the selected spacing of the uprights "i". For structures with steel shores, the design is carried out according to tab. 2 which gives the dimensions of the uprights and of the supporting beams as well as the type of shoring system depending on the selected spacing of the uprights "i" and on the floor distance "H".

The wooden members have been selected as far as possible with the same cross sections, in order to make it easier to find the correct materials and to make the connections between the elements themselves more effective.

SHORES FOR BALCONIES

Main assumptions

This shore has been designed for balconies with a load bearing structure made from a solid concrete slab 15 cm thick and loaded according to the regulation in force.

This shore has been designed to support all the load.

General recommendations

On page 3/10 only one system for the balcony support has been proposed, taking into account that the scope of this shore is limited to balconies having an overhang not higher than 3 m.

The balcony shores should be designed in a similar way to that described for slab shores, according to tables 3 and 4 on page 3/10.

WARNING

All the dimensional figures must be intended as minimum design values. If a material specified in this section is not available, larger cross section for wooden elements may be used and, for steel members, the alternative materials shown in the table on the right, after consulting the following guidance, may be used. Once that the lower-right diagonal corresponding to the suggested shore is identified in the table, the cells positioned below the suggested cell and on that diagonal starting from the suggested cell should be considered. All the cells that are within the triangle described and up to the border of the table may be used. For example, instead of B40 it is possible to use:

	25	30	35	40	45	50	55
Α					\bowtie	\searrow	\ge
В							
С					\square		
D							
Е				▼			

C40, D40, E40, C45, D45, E45, D50, E50, E55

Table 5 – Sizing of the supporting system

	L (m)	L ₁ (m)	L ₂ (m)	i _t	header
	< 3.0	about L/3	about L/3		13x13
llc 1m	3.0 - 4.0	1m < L ₁ ≤ 1.25m	1m < L₂ ≤ 1.5m	may 1 E m	15x15
□ ≥ 4111	4.0 - 5.0	1.25m < L ₁ ≤ 1.5m	1.5m < L ₂ ≤ 2m		18x18
	5.0 - 6.0	1.5m < L ₁ ≤ 1.75m	2m < L ₂ ≤ 2.5m		20x20
4 < H \leq 6m Stiffening beams should be placed close to about half length of struts and uprights (n.2 planks 2. fixed by n.3 nails I=80 mm) in order to reduce their free flexural length.					

Other members				
upright	same as the header			
strut	same as the header			
sole plate	same as the header			
upper saddle	same as the header			
springer member	same as the header			
distribution beam	beams 10x10 cm with transverse spacing equal to 50 cm			

5.0m < L ≤ 6.0m

for each end

SHORES FOR BALCONIES - "T" SOLUTION: general instructions

STOP-SB/T

SHORES FOR BALCONIES – "T" SOLUTION

Main assumptions

This shore has been designed for clay-concrete floors, having a thickness equal to 1/25 of the span, and a distribution slab 4 cm thick, loaded according to the regulation in force for civil buildings. This shore is sized to support the whole floor, irrespective of any supports at the extremities.

General directions

On page 8/10 a solution with minimum spacing of 1.5 m between each frame is proposed.

It must be noted that the proposed solution is aimed at transferring loads onto already existing load bearing members, which are assumed to be in good conditions.

Therefore, the position of load bearing elements should be carefully detected, in order to place the shore's supports close to them.

Once that the building type and the position of load bearing members has been defined, the span "L" and the distance between two consecutive floors should be measured. The design should be carried out according to table 5, which reports the relevant dimensions of the frame members and further reference for the geometrical definition of the structure.

The wooden members have been selected as far as possible with the same cross sections, in order to make it easier to find the correct materials and to make the connections between the elements themselves more effective.

WARNINGS

All the dimensional figures should be intended as minimum design values. If the specified materials are not available, timbers with larger cross sections may be used.

The static conditions of load bearing walls should be preliminarily assessed in order to verify that their damage is light or that the load bearing capacity of the structure has not been significantly modified by the earthquake.

For this purpose, the following situations are assumed as acceptable:

• cracks less than 1 mm wide, no matter how distributed on the masonry, with no material ejection

• limited detachments or light displacements (< 1 mm) between portions of structures, for example between walls and floors or between walls and stairs or between perpendicular walls.

• out-of-plumb having limited extension and not related to in-elevation detachments phenomena or to foundations settlings due to the earthquake, which can be considered pre-existing and not affecting the load bearing capacity of structures.

VADEMECUM STOP

SUPPORT OF VAULTS AND ARCHES

ABRUZZO EARTHQUAKE 2009 COORDINATION TEAM FOR TEMPORARY WORKS

WORKING GROUP FOR THE VADEMECUM STOP under the supervision of Sergio Basti - Central director for emergency and urgent technical rescue manual licensed by note no. EM3064/5001-11 dated 2009-06-15

S.Grimaz (coordinator) L.Munaro, M.Cavriani, E.Mannino, C.Bolognese, M.Caciolai, L.Ponticelli, M.Bellizzi, A. D'Odorico, A.Maiolo

> With the contribute of: F.Barazza, P.Malisan, A.Moretti

Translated by: L. Ponticelli, S. La Mendola, E. Gissi and Keith Bellamy Section Leader, Urban Search & Rescue Hampshire Fire and Rescue Service, UK

S C P

SUPPORT OF VAULTS AND ARCHES: general recommendations

Function of the support: to direct the loads to the ground discharging the lateral masonry structure.

remember to provide a continuous layer of planks under the wall structure to transfer the load from the masonry to N.B. the shore STOP 2010-05-25 EN 02 © CNVVF- Using allowed under CNVVF supervision

 $2.0 \text{ m} < L \le 3.0 \text{ m}$

SV 3/8

T ≤ 1.0 m

					enigio	Shore
Span (L)	Cr	oss sections of be	Cross sections struts	of beams and (bxb)		
	13x13	15x15	18x18	20x20	18x18	20x20
3.0 m < L ≤ 4.5 m	T ≤ 1.0 m	T ≤ 2.0 m	T ≤ 3.5 m	T ≤ 3.5 m	H ≤ 4.5 m	H ≤ 5.0 m
4.5 m < L ≤ 6.0 m	T ≤ 1.0 m	T ≤ 2.0 m	T ≤ 3.0 m	T ≤ 3.5 m	H ≤ 4.0 m	H ≤ 5.0 m

Table 4 - Vaults: maximum distance between transverse beams (T)

Span (L)	Shores for barrel vaults Maximum longitudinal distance between shores: 1.0 m				
	Cross sections of beams and struts (bxb)				
	18x18	20x20			
3.0 m < L ≤ 4.5 m	T ≤ 1.5 m	T ≤ 2.0 m			
4.5 m < L ≤ 6.0 m	T ≤ 1.0 m	T ≤ 2.0 m			

N.B. remember to provide a continuous layer of planks under the wall structure to transfer the load from the masonry to the shore

 Table 5 – Arches: maximum distance between transverse beams for braced multiple shores (T) and maximum springer heigth (H) for single shores

Span (L)	Sh	ores for wall wid Braced mul	Shores for wall width s _m ≤ 0.5 m Single shore			
	Cro	oss sections of be	Cross sections of beams and struts (bxb)			
	13x13	15x15	18x18	20x20	18x18	20x20
$6.0 \text{ m} \le 1.0 \text{ m}$	T ≤ 1.5 m	T ≤ 2.0 m	T ≤ 3.0 m	T ≤ 4.0 m	H ≤ 4.0 m	H ≤ 5.5 m

Table 6 - Vaults: maximum distance between transverse beams (T)

	Shores for barrel vaults Maximum longitudinal distance between shores: 1.0 m Cross sections of beams and struts (bxb)								
Span (L)									
	18x18	20x20							
6.0 m < L ≤ 8.0 m	T ≤ 1.5 m	T ≤ 2.0 m							

N.B. remember to provide a continuous layer of planks under the wall structure to transfer the load from the masonry to the shore

SUPPORT OF VAULTS AND ARCHES: critical considerations

STOP-SV

CRITICAL CONSIDERATIONS

One of the most significant critical considerations is <u>the transferring of the loads from the shore to the ground</u>. If the ground is too soft, it is important to provide a distribution element (R) under the structure or a lateral discharge pattern for the loads (A) or a horizontal beam (T) or an alternative path for the loads (S).

STOP-SV

SUPPORT OF VAULTS AND ARCHES: details

SUPPORT OF VAULTS AND ARCHES: general instructions

STOP-SV

SUPPORT OF VAULTS AND ARCHES

Field of application

The present procedure can be used only for wall arches or wall rounded or reduced barrel vaults. It can't be used for concrete structures. If the lateral walls are in rotation other measures should be used. The maximum value of the stringer height is 8.0 m for vaults and 6 m for arches ($s_m \le 1.0 \text{ m}$).

General assumptions

The purpose of the shore is to maintain the arch/vault and to reduce the loads on the lateral walls. It is necessary to verify the load bearing capacity of the surface under the shore (see page 6/8).

For vaults it is necessary to provide a continuous set of planks between the wall and the shore.

Instructions

After measuring the span "L" it is possible to select the type of shore:

- on page 3/8 the solutions for a span of no more than 3 m are listed;

- on page 4/8 the solutions for a span of no more than 6 m are listed;

- on page 5/8 the solutions for a span of no more than 8 m are listed.

For arches, it is possible to provide a single shore if the width of the wall is less than 50 cm and two braced shores if the width of the wall is less than 100 cm.

After the selection of the type, it is possible to define the cross section of the beams and then the maximum distance between the transverse planks for multiple shores or the maximum height of the arch for single shore solutions (if $s_m \le 50$ cm)

All the beams have the same cross section.

The type with passage allowed is possible if the inclination of the strut is less than 1/0.8.

For example, each of the two shores to provide for an arch in a wall with $s_m = 0.7$ m and span of 5.5 m can be built using beams 13x13 with the distance between the transverse beams not more than 1.0 m or with beams 15x15 with the maximum distance between the transverse beams equal to 2.0 m and so on.

The maximum longitudinal distance between the shores is 1.0m. For distances less than 1.0 m it is only necessary to link the beam with screws.

VADEMECUM STOP

STEEL WIRE ROPE TIE BACKS

ABRUZZO EARTHQUAKE 2009 COORDINATION TEAM FOR TEMPORARY WORKS

WORKING GROUP FOR THE VADEMECUM STOP under the supervision of Sergio Basti - Central director for emergency and urgent technical rescue manual licensed by note no. EM3064/5001-11 dated 2009-06-15

S.Grimaz (coordinator) L.Munaro, M.Cavriani, E.Mannino, C.Bolognese, M.Caciolai, L.Ponticelli, M.Bellizzi, A. D'Odorico, A.Maiolo

> With the contribute of: F.Barazza, P.Malisan, A.Moretti

Translated by: L. Ponticelli, S. La Mendola, E. Gissi and Keith Bellamy Section Leader, Urban Search & Rescue Hampshire Fire and Rescue Service, UK

WARNING: tie backs should always be placed close to (or coupled to) members (main inside walls, stiff floors, main beams) able to perform a spacing function to avoid that their ends getting closer under traction or seismic actions

This symbol means that a solution is allowed only if the anchorage is made in concrete blocks, in squared stone blocks or in tight masonry

PARTIAL CONSTRAINED HOOP: general recommendations

If the <u>anchorage is placed beyond an opening</u>, D should be measured from the internal edge of the opening.

In any case the anchorage should be placed beyond the failure wedge

the failure wedge lower end (wall detachment crack beginning)

All the elements should be designed according to Tables 1 and 2

In case of full detachment it should be assumed Q = z

STOP-TA

STEEL WIRE ROPE HOOPS: design

											ŀ	lint					
Table 1							up	to 3 m			3 -	4 m		4 - 5 m			
max 1 10 m		SI	EIS	MIC CL	ASS A*	Sm						Sm		Sm			
						up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m	up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m	up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m
CE		up to 5 m		up to	Ø rope [mm]	12	12	14	14	12	12	14	14	12	12	14	14
			_	1 m	D min [m]	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
			2	1-2m	Ø rope [mm]	16	18	20	20	14	16	18	20	14	16	18	20
					D min [m]	2.2	1.9	1.8	1.7	2.0	1.8	1.7	1.6	1.9	1.7	1.6	1.6
CP in opening	Iſ		z	up to	Ø rope [mm]	12	14	16	18	12	14	16	18	12	14	16	16
	I. I	5 7m		1 m	D min [m]	1.6	1.4	1.3	1.2	1.4	1.3	1.2	1.1	1.3	1.2	1.1	1.1
	1-	J-7111		1-2m	Ø rope [mm]	18	20	22	24	18	20	22	24	16	20	22	24
					D min [m]	3.1	2.7	2.5	2.4	2.8	2.5	2.3	2.3	2.6	2.4	2.3	2.2
CP !		7-10m		up to	Ø rope [mm]	16	18	20	20	14	16	18	20	14	16	18	20
			_	1 m	D min [m]	2.2	1.9	1.8	1.7	2.0	1.8	1.7	1.6	1.9	1.7	1.6	1.6
			2	1-2m	Ø rope [mm]	22	24	n.c.	n.c.	20	24	n.c.	n.c.	20	22	n.c.	n.c.
					D min [m]	4.4	3.9	3.6	3.4	4.0	3.6	3.4	3.2	3.7	3.4	3.2	3.1
		up to		up to	upright section	10x10	10x10	10x10	13x13	10x10	10x10	10x10	13x13	10x10	10x10	10x10	10x10
				1 m	f max [m]	0.20	0.20	0.30	0.30	0.20	0.20	0.30	0.30	0.20	0.20	0.20	0.30
			i	1-1.5m	upright section	10x10	13x13	13x13	13x13	10x10	13x13	13x13	13x13	10x10	10x10	13x13	13x13
		1 m			f max [m]	0.30	0.20	0.20	0.40	0.20	0.30	0.30	0.40	0.20	0.30	0.30	0.40
				1.5-2m	upright section	13X13	13X13	15X15	15X15	10010	13X13	13X13	15X15	10010	13X13	13X13	15X15
	z	1 - 2m		un to	I max [m]	0.20 12v12	0.30 12×12	0.30 15×15	0.40 15v15	0.20 12v12	0.20 12v12	0.30	0.40 15×15	0.20 12v12	12×12	0.30 15x15	0.40 15v15
				1 m	f max [m]	0.40	0.50	0.50	0.80	0.40	0.40	0.50	0.80	0.40	0.40	0.50	0.80
					upright section	15x15	15x15	18x18	18x18	15x15	15x15	18x18	18x18	13x13	15x15	18x18	18x18
			i	1-1.5m	f max [m]	0.40	0.50	0.50	0.80	0.40	0.50	0.50	0.80	0.40	0.50	0.50	0.80
				1.5-2m	upright section	15x15	18x18	20x20	2 15x15	15x15	18x18	20x20	2 15x15	15x15	18x18	18x18	20x20
					f max [m]	0.60	0.90	0.80	0.80	0.60	0.50	0.80	0.80	0.60	0.50	0.80	0.80
	nc		lior	notan	nlicable (try oth	or solu	itions)										

ĺ						hint											
Table 2						up to 3 m					3 -	· 4 m		4 - 5 m			
max 10 m		S	EIS	MIC CL	ASS B*	Sm						Sm		Sm			
max E TO m						up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m	up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m	up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m
		up to		up to	Ø rope [mm]	12	12	12	12	12	12	12	12	12	12	12	12
CE				1 m	D min [m]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ŬĽ		5 m	14	1.0m	Ø rope [mm]	14	14	16	18	12	14	16	18	12	14	16	16
				1-2111	D min [m]	1.2	1.1	1.0	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0
				up to	Ø rope [mm]	12	12	14	14	12	12	14	14	12	12	14	14
CP in		F 7m		1 m	D min [m]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
opening	-	5-711	14	1.0m	Ø rope [mm]	16	18	20	20	14	16	18	20	14	16	18	20
				1-200	D min [m]	1.7	1.5	1.4	1.3	1.5	1.4	1.3	1.2	1.4	1.3	1.2	1.2
CP !	ſ		z	up to	Ø rope [mm]	14	14	16	18	12	14	16	18	12	14	16	16
		7 10m		1 m	D min [m]	1.2	1.1	1.0	1.0	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0
		7-1011		1.0m	Ø rope [mm]	18	20	22	24	18	20	22	24	16	20	22	24
				1-2111	D min [m]	2.4	2.1	1.9	1.8	2.2	1.9	1.8	1.8	2.0	1.8	1.8	1.7
					-												
		up to		up to	upright section	10x10	10x10	10x10	10x10	10x10	10x10	10x10	10x10	10x10	10x10	10x10	10x10
				1 m	f max [m]	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
			li	1-1.5m	upright section	10x10	10x10	10x10	13x13	10x10	10x10	10x10	13x13	10x10	10x10	10x10	13x13
	1	1 m			f max [m]	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
				1.5-2m	upright section	10x10	13x13	13X13	13x13	10x10	10x10	13X13	13X13	10x10	10x10	13X13	13x13
	z			un to	f max [m]	0.20	0.20	0.20	0.20 15v15	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
				1 m	f max [m]	0.20	0.50	0.50	0.50	0.20	0.50	0.50	0.50	0.20	0.50	0.50	0.50
		1 - 2m		1 111	unright section	0.20 13y13	15x15	0.00 15x15	18v18	13y13	13y13	0.00 15x15	15x15	0.20 13y13	13x13	0.00 15x15	15x15
			i	1-1.5m	f max [m]	0.40	0.30	0.50	0.50	0.40	0.30	0.30	0.50	0.40	0.30	0.30	0.50
			11	4.5.0	upright section	15x15	15x15	18x18	18x18	13x13	15x15	18x18	18x18	13x13	15x15	18x18	18x18
				1.5-2m	f max [m]	0.30	0.40	0.40	0.60	0.30	0.40	0.40	0.60	0.30	0.40	0.40	0.60
L											•				n		

(*) For the seismic classes see Annex 1

If no Annex 1 is provided, seismic class A should be used

NOTE: the wire ropes have been sized with a safety factor to ultimate load equal to 2.5

In any case the anchorage should be placed beyond the failure wedge

All the elements should be designed according to Tables 3 and 4

TRANSOM WITH SIDE HOOP: design

STOP-TA

			1	up to 1.5 m			up to 3 m				up to 4 m				
	SEISMIC CLASS A*				<u>up to</u> S	m		Sm					s s	m	
			up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m	up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m	up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1	
			Ø rope [mm]	14	16	16	18	18	20	24	n.c.	20	24	n.c.	n.c
		up to	transom	HEA140	HEA160	HEA160	HEA180	HEA200	HEA200	HEA220	n.c.	HEA200	HEA220	n.c.	n.c
١.	.	5 M	D min [m]	1.3	1.1	1.0	1.0	2.5	2.2	2.0	n.c.	3.1	2.7	n.c.	n.c
ľ	ᄕ		Ø rope [mm]	16	18	20	22	22	24	n.c.	n.c.	24	n.c.	n.c.	n.c
		5-7m	transom	HEA200	HEA200	HEA220	HEA240	HEA240	HEA260	n.c.	n.c.	HEA260	n.c.	n.c.	n.c
			D min [m]	1.8	1.5	1.4	1.4	3.6	3.1	n.c.	n.c.	4.3	n.c.	n.c.	n.c
Γ		up to	upright section	10x10	13x13	13x13	13x13	15x15	18x18	18x18	n.c.	18x18	20x20	n.c.	n.c
		1 m	f max [m]	0.40	0.40	0.40	0.30	0.60	0.90	0.80	n.c.	0.90	1.10	n.c.	n.o
L		115m	upright section	13x13	13x13	15x15	18x18	18x18	20x20	20x20	n.c.	20x20	2 18x18	n.c.	n.o
Ľ	'	1-1.5 11	f max [m]	0.20	0.20	0.40	0.40	0.60	0.80	0.80	n.c.	0.90	1.10	n.c.	n.(
	Γ.	15.2m	upright section	13x13	15x15	18x18	18x18	20x20	2 18x18	2 18x18	n.c.	2 18x18	2 20x20	n.c.	n.
		1.5 - 2 11	f max [m]	0.20	0.30	0.30	0.40	0.70	0.60	0.80	n.c.	0.90	1.10	n.c.	n.
Γ										z					
ſ					up to	o 1.5 m			up t	z o 3 m			up t	o 4 m	
[SEISM	IC CLASS B*		up to) 1.5 m Sm			up t	z o3m Sm			up t	0 4 m Sm	
		SEISM	IC CLASS B*	up to 0.4 m	up tc	0 1.5 m Sm 0.6-0.8m	0.8-1m	up to 0.4 m	up t 0.4-0.6m	z o 3 m Sm 0.6-0.8m	0.8-1m	up to 0.4 m	up t 0.4-0.6m	o 4 m Sm 0.6-0.8m	0.8
		SEISM	IC CLASS B*	up to 0.4 m 12	up tc 0.4-0.6m 12	0 1.5 m Sm 0.6-0.8m 14	0.8-1m 16	up to 0.4 m 16	up t 0.4-0.6m 18	z o 3 m Sm 0.6-0.8m 20	0.8-1m 22	up to 0.4 m 18	up t 0.4-0.6m 20	o 4 m Sm 0.6-0.8m 22	0.8
		SEISM	IC CLASS B* Ø rope [mm] transom	up to 0.4 m 12 HEA140	up tc 9 0.4-0.6m 12 HEA140	0 1.5 m Sm 0.6-0.8m 14 HEA140	0.8-1m 16 HEA160	up to 0.4 m 16 HEA160	up t 0.4-0.6m 18 HEA180	z o 3 m Sm 0.6-0.8m 20 HEA200	0.8-1m 22 HEA200	up to 0.4 m 18 HEA180	up t 0.4-0.6m 20 HEA200	o 4 m Sm 0.6-0.8m 22 HEA220	0.8
		SEISM up to 5 m	IC CLASS B* Ø rope [mm] transom D min [m]	up to 0.4 m 12 HEA140 1.0	up to 9 0.4-0.6m 12 HEA140 1.0	0.6-0.8m 14 HEA140 1.0	0.8-1m 16 HEA160 1.0	up to 0.4 m 16 HEA160 1.8	up t 9 0.4-0.6m 18 HEA180 1.6	z o 3 m Sm 0.6-0.8m 20 HEA200 1.5	0.8-1m 22 HEA200 1.4	up to 0.4 m 18 HEA180 2.2	up t 0.4-0.6m 20 HEA200 1.9	o 4 m Sm 0.6-0.8m 22 HEA220 1.8	0.8 HE
	L	SEISM up to 5 m	IC CLASS B* Ø rope [mm] transom D min [m] Ø rope [mm]	up to 0.4 m 12 HEA140 1.0 14	up to 0.4-0.6m 12 HEA140 1.0 16	0.6-0.8m 0.6-0.8m 14 HEA140 1.0 16	0.8-1m 16 HEA160 1.0 18	up to 0.4 m 16 HEA160 1.8	up t 0.4-0.6m 18 HEA180 1.6 20	z o 3 m Sm 0.6-0.8m 20 HEA200 1.5 24	0.8-1m 22 HEA200 1.4 n.c.	up to 0.4 m 18 HEA180 2.2 20	up t 0.4-0.6m 20 HEA200 1.9 24	o 4 m Sm 0.6-0.8m 22 HEA220 1.8 n.c.	0.8 HE. 1
	L	SEISM up to 5 m 5-7m	IC CLASS B* Ø rope [mm] transom D min [m] Ø rope [mm] transom	up to 0.4 m 12 HEA140 1.0 14 HEA160	up to 0.4-0.6m 12 HEA140 1.0 16 HEA180	0 1.5 m Sm 0.6-0.8m 14 HEA140 16 HEA200	0.8-1m 16 HEA160 1.0 18 HEA200	up to 0.4 m 16 HEA160 1.8 18 HEA220	up t 0.4-0.6m 18 HEA180 1.6 20 HEA240	z o 3 m Sm 0.6-0.8m 20 HEA200 1.5 24 HEA240	0.8-1m 22 HEA200 1.4 n.c. n.c.	up to 0.4 m HEA180 2.2 20 HEA220	up t 0.4-0.6m 20 HEA200 1.9 24 HEA240	o 4 m Sm 0.6-0.8m 22 HEA220 1.8 n.c. n.c.	0.8 2 HE 1 n n
-	L	SEISM up to 5 m 5-7m	IC CLASS B* Ø rope [mm] transom D min [m] Ø rope [mm] transom D min [m]	up to 0.4 m 12 HEA140 1.0 14 HEA160 1.3	up tc 3 0.4-0.6m 12 HEA140 1.0 16 HEA180 1.1	0 1.5 m Sm 0.6-0.8m 14 HEA140 1.0 16 HEA200 1.0	0.8-1m 16 HEA160 1.0 18 HEA200 1.0	up to 0.4 m 16 HEA160 1.8 18 HEA220 2.5	up t 3 0.4-0.6m 18 HEA180 1.6 20 HEA240 HEA240 2.2	z o 3 m 5m 0.6-0.8m 20 HEA200 1.5 24 HEA240 2.0	0.8-1m 22 HEA200 1.4 n.c. n.c. n.c.	up to 0.4 m 18 HEA180 2.2 20 HEA220 3.1	up t 0.4-0.6m 20 HEA200 1.9 24 HEA240 2.7	o 4 m Sm 0.6-0.8m 22 HEA220 1.8 n.c. n.c. n.c.	0.8 1 HE 1 n n n n
-	L	SEISM up to 5 m 5-7m	IC CLASS B* Ø rope [mm] transom D min [m] Ø rope [mm] transom D min [m]	up to 0.4 m 12 HEA140 1.0 14 HEA160 1.3	up to 3 0.4-0.6m 12 HEA140 1.0 16 HEA180 1.1	0 1.5 m Sm 0.6-0.8m 14 HEA140 1.0 16 HEA200 1.0	0.8-1m 16 HEA160 1.0 18 HEA200 1.0	up to 0.4 m 16 HEA160 1.8 18 HEA220 2.5	up t 9 0.4-0.6m 18 HEA180 1.6 20 HEA240 2.2	z o 3 m Sm 0.6-0.8m 20 HEA200 1.5 24 HEA240 2.0	0.8-1m 22 HEA200 1.4 n.c. n.c. n.c.	up to 0.4 m 18 HEA180 2.2 20 HEA220 3.1	up t 0.4-0.6m 20 HEA200 1.9 24 HEA240 2.7	o 4 m Sm 0.6-0.8m 22 HEA220 1.8 n.c. n.c. n.c.	0.8 2 HE/ 1 n n n
-	L	SEISM up to 5 m 5-7m up to	IC CLASS B* Ø rope [mm] transom D min [m] Ø rope [mm] transom D min [m] upright section	up to 0.4 m 12 HEA140 1.0 14 HEA160 1.3 10x10	up to 9 0.4-0.6m 12 HEA140 1.0 16 HEA180 1.1 10x10	0 1.5 m Sm 0.6-0.8m 14 HEA140 1.0 16 HEA200 1.0 10x10	0.8-1m 16 HEA160 1.0 18 HEA200 1.0 1.0	up to 0.4 m 16 HEA160 1.8 18 HEA220 2.5 13x13	up t 9 0.4-0.6m 18 HEA180 1.6 20 HEA240 2.2 15x15	z o 3 m 5m 0.6-0.8m 20 HEA200 1.5 24 HEA240 2.0 18x18	0.8-1m 22 HEA200 1.4 n.c. n.c. 18x18	up to 0.4 m 18 HEA180 2.2 20 HEA220 3.1 18x18	up t 0.4-0.6m 20 HEA200 1.9 24 HEA240 2.7 18x18	o 4 m Sm 0.6-0.8m 22 HEA220 1.8 n.c. n.c. n.c. 20x20	0.8 2 HE, 1 n n n
-	L	SEISM up to 5 m 5-7m up to 1 m	IC CLASS B* Ø rope [mm] transom D min [m] Ø rope [mm] transom D min [m] upright section f max [m]	up to 0.4 m 12 HEA140 1.0 1.4 HEA160 1.3 10x10 0.2	up to 9 0.4-0.6m 12 HEA140 1.0 16 HEA180 1.1 10x10 0.2	0.6-0.8m 0.6-0.8m 14 HEA140 1.0 16 HEA200 1.0 10x10 0.5	0.8-1m 16 HEA160 1.0 18 HEA200 1.0 1.0	up to 0.4 m 16 HEA160 1.8 HEA220 2.5 13x13 0.5	up t 9.4-0.6m 18 HEA180 1.6 20 HEA240 2.2 15x15 0.7	z o 3 m 0.6-0.8m 20 HEA200 1.5 24 HEA240 2.0 18x18 1.0	0.8-1m 22 HEA200 1.4 n.c. n.c. n.c. 18x18 1.0	up to 0.4 m 18 HEA180 2.2 20 HEA220 3.1 18x18 1.2	up t 0.4-0.6m 20 HEA200 1.9 24 HEA240 2.7 18x18 1.1	o 4 m Sm 0.6-0.8m 22 HEA220 1.8 n.c. n.c. n.c. 20x20 1.3	0.8 2 HE/ 1 n n n 20 1
-	L	SEISM up to 5 m 5-7m up to 1 m 1 - 1 5 m	IC CLASS B* Ø rope [mm] transom D min [m] Ø rope [mm] transom D min [m] upright section f max [m] upright section	up to 0.4 m 12 HEA140 1.0 14 HEA160 1.3 10x10 0.2 10x10	up to 0.4-0.6m 12 HEA140 1.0 16 HEA180 1.1 10x10 0.2 13x13	0.6-0.8m 14 HEA140 1.0 16 HEA200 1.0 10x10 0.5 13x13	0.8-1m 16 HEA160 1.0 18 HEA200 1.0 1.0 13x13 0.5 15x15	up to 0.4 m 16 HEA160 1.8 HEA220 2.5 13x13 0.5 15x15	up t 0.4-0.6m 18 HEA180 1.6 20 HEA240 2.2 15x15 0.7 18x18	z o 3 m Sm 0.6-0.8m 20 HEA200 1.5 24 HEA240 2.0 18x18 1.0 18x18 1.0	0.8-1m 22 HEA200 1.4 n.c. n.c. n.c. 18x18 1.0 20x20	up to 0.4 m 18 HEA180 2.2 20 HEA220 3.1 18x18 1.2 18x18	up t 0.4-0.6m 20 HEA200 1.9 24 HEA240 2.7 18x18 1.1 20x20	o 4 m Sm 0.6-0.8m 22 HEA220 1.8 n.c. n.c. n.c. 20x20 1.3 2 18x18	0.8 22 HE/ 1 n n 20 20 2 18
-	L ·	SEISM up to 5 m 5-7m up to 1 m 1 - 1.5 m	IC CLASS B* Ø rope [mm] transom D min [m] Ø rope [mm] transom D min [m] upright section f max [m] upright section f max [m]	up to 0.4 m 12 HEA140 1.0 14 HEA160 1.3 10x10 0.2 10x10 0.4	up to 0.4-0.6m 12 HEA140 16 HEA180 1.1 10x10 0.2 13x13 0.3	0 1.5 m Sm 0.6-0.8m 14 HEA140 16 HEA200 1.0 10x10 0.5 13x13 0.3	0.8-1m 16 HEA160 1.0 18 HEA200 1.0 13x13 0.5 15x15 0.3	up to 0.4 m 16 HEA160 1.8 HEA220 2.5 13x13 0.5 15x15 0.5	up t 0.4-0.6m 18 HEA180 1.6 20 HEA240 2.2 15x15 0.7 18x18 0.8	z o 3 m Sm 0.6-0.8m 20 HEA200 1.5 24 HEA240 2.0 18x18 1.0 18x18 0.8	0.8-1m 22 HEA200 1.4 n.c. n.c. n.c. 18x18 1.0 20x20 0.9	up to 0.4 m 18 HEA180 2.2 20 HEA220 3.1 18x18 1.2 18x18 0.9	up t 0.4-0.6m 20 HEA200 1.9 24 HEA240 2.7 18x18 1.1 20x20 1.0	o 4 m Sm 0.6-0.8m 22 HEA220 1.8 n.c. n.c. n.c. 20x20 1.3 2 18x18 1.3	0.8 2 HEA 1 n n 20 20 1 1 2 18 1
-	L ·	SEISM up to 5 m 5-7m up to 1 m 1 - 1.5 m 1 5 - 2 m	IC CLASS B* Ø rope [mm] transom D min [m] Ø rope [mm] transom D min [m] upright section f max [m] upright section f max [m] upright section	up to 0.4 m 12 HEA140 1.4 HEA160 1.3 10x10 0.2 10x10 0.4 13x13	up to 0.4-0.6m 12 HEA140 1.0 16 HEA180 1.1 10x10 0.2 13x13 0.3 13x13	0 1.5 m Sm 0.6-0.8m 14 HEA140 1.0 16 HEA200 1.0 10x10 0.5 13x13 0.3 15x15	0.8-1m 16 HEA160 1.0 18 HEA200 1.0 13x13 0.5 15x15 0.3 18x18	up to 0.4 m 16 HEA160 1.8 18 HEA220 2.5 13x13 0.5 15x15 0.5 15x15 0.5 18x18	up t 9 0.4-0.6m 18 HEA180 1.6 20 HEA240 2.2 HEA240 2.2 15x15 0.7 18x18 0.8 18x18	z o 3 m 5m 0.6-0.8m 20 HEA200 1.5 24 HEA240 2.0 18x18 1.0 18x18 0.8 20x20	0.8-1m 22 HEA200 1.4 n.c. n.c. n.c. 18x18 1.0 20x20 0.9 2 18x18	up to 0.4 m 18 HEA180 2.2 20 HEA220 3.1 18x18 1.2 18x18 0.9 20x20	up t 0.4-0.6m 20 HEA200 1.9 24 HEA240 2.7 18x18 1.1 20x20 1.0 2 18x18	o 4 m Sm 0.6-0.8m 22 HEA220 1.8 n.c. n.c. n.c. 20x20 1.3 2 18x18 1.3 2 20x20	0.8 2 HEA 1 n n n 20 1 2 1 1 2 2

n.c. - solution not applicable (try other solutions)

(*) For the seismic classes see Annex 1

If no Annex 1 is provided, seismic class A should be used

NOTE: the wire ropes have been sized with a safety factor to ultimate load equal to 2.5

WARNING:

when L > 7 m, this solution is applicable only if it is possible to make an anchorage at a distance < 7 m on an intermediate main inside wall.

In this case the tables should be applied considering L as the distance between the two anchorage tendons.

THROUGH INTERNAL DISTRIBUTED ROPES: general recommendations

STOP-TA

© CNVVF- Using allowed under CNVVF supervision

TI

Ministry of Interior – CNVVF, Italian National Fire Service Coordination team for temporary works <u>Shoring Templates and Operating Procedures</u> for the support of buildings damaged by earthquakes

THROUGH INTERNAL DISTRIBUTED ROPES: design

STOP-TA

								h	int					
				up to	03 m		3 - 4 m					4 -	5 m	
	SEISMI	C CLASS A*	Sm			Sm			Sm					
			up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m	up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m	up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m
		Ø rope [mm]	12	14	16	16	14	16	16	18	14	16	18	20
		wooden transom	15x15	18x18	20x20	20x20	18x18	20x20	2 15x15	2 18x18	18x18	20x20	2 18x18	2 18x18
	up to 1 m	steel transom	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN16
		upright section	13x13	15x15	18x18	18x18	15x15	18x18	20x20	2 18x18	18x18	20x20	2 18x18	2 20x2
		f max [m]	0.6	0.5	0.8	0.7	0.9	1.1	1.0	1.3	1.2	1.5	1.5	1.5
		Ø rope [mm]	14	16	18	20	16	18	20	n.c.	18	20	n.c.	n.c.
		wooden transom	18x18	2 15x15	2 18x18	2 18x18	20x20	2 18x18	2 18x18	n.c.	2 15x15	2 18x18	n.c.	n.c.
i	1 - 1.5 m	steel transom	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	n.c.	2UPN160	2UPN160	n.c.	n.c.
	- 1.5 m s	upright section	15x15	18x18	18x18	20x20	18x18	20x20	2 18x18	n.c.	20x20	2 20x20	n.c.	n.c.
L		f max [m]	0.4	0.6	0.7	0.9	0.8	1.1	1.3	n.c.	1.2	1.4	n.c.	n.c.
		Ø rope [mm]	16	18	20	n.c.	18	20	n.c.	n.c.	20	n.c.	n.c.	n.c.
		wooden transom	2 18x18	2 18x18	2 20x20	n.c.	2 18x18	2 20x20	n.c.	n.c.	2 18x18	n.c.	n.c.	n.c.
	1.5 - 2 m	steel transom	2UPN160	2UPN160	2UPN160	n.c.	2UPN160	2UPN160	n.c.	n.c.	2UPN160	n.c.	n.c.	n.c.
		upright section	18x18	18x18	20x20	n.c.	20x20	2 18x18	n.c.	n.c.	2 18x18	n.c.	n.c.	n.c.
				~ ~			0 1							

				up to	o 3 m			3 -	4 m			4 -	5 m	
	SEISMI	C CLASS B*	Sm				Sm				Sm			
			up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m	up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m	up to 0.4 m	0.4-0.6m	0.6-0.8m	0.8-1m
		Ø rope [mm]	12	12	12	14	12	12	14	16	12	14	16	16
		wooden transom	13x13	15x15	18x18	18x18	15x15	18x18	18x18	20x20	15x15	18x18	20x20	2 15x15
	up to 1 m	steel transom	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160
		upright section	13x13	13x13	15x15	18x18	15x15	18x18	18x18	20x20	18x18	18x18	20x20	2 18x18
		f max [m]	0.5	0.7	0.7	1.0	0.8	1.1	1.0	1.2	1.2	1.4	1.5	1.5
		Ø rope [mm]	12	14	16	16	14	16	18	18	14	16	18	20
		wooden transom	15x15	18x18	20x20	2 15x15	18x18	20x20	2 15x15	2 18x18	18x18	2 15x15	2 18x18	2 20x20
i	1 - 1.5 m	steel transom	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160
		upright section	13x13	15x15	18x18	18x18	18x18	18x18	20x20	2 18x18	18x18	2 18x18	2 18x18	2 20x20
		f max [m]	0.5	0.8	0.7	0.9	0.9	1.0	1.3	1.2	1.1	1.4	1.5	1.5
		Ø rope [mm]	14	16	18	20	16	18	20	n.c.	16	20	n.c.	n.c.
		wooden transom	18x18	20x20	2 18x18	2 18x18	20x20	2 18x18	2 18x18	n.c.	2 18x18	2 18x18	n.c.	n.c.
	1.5 - 2 m	steel transom	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	2UPN160	n.c.	2UPN160	2UPN160	n.c.	n.c.
		upright section	15x15	18x18	18x18	20x20	18x18	20x20	2 18x18	n.c.	20x20	2 18x18	n.c.	n.c.
		f max [m]	0.4	0.6	0.8	1.0	0.7	1.1	1.0	n.c.	1.2	1.4	n.c.	n.c.

n.c. - solution not applicable (try other solutions)

(*) For the seismic classes see Annex 1

If no Annex 1 is provided, seismic class A should be used

NOTE: the wire ropes have been sized with a safety factor to ultimate load equal to 2.5

STEEL TENDONS: construction details

NOTE: a, b are alternative solutions

STOP-TA

STEEL TENDONS: construction details

STEEL TENDONS: construction details

NOTE: a, b and c are equivalent and alternative solutions

STOP-TA

STEEL TENDONS: construction details

STOP-TA

STEEL TENDONS: construction details

STEEL TENDONS: constructional details

NOTE: a, b and c are equivalent and alternative solutions

STEEL TENDONS: constructional details

STEEL TENDONS: constructional details

STEEL TENDONS: constructional details

STOP-TA

Table 7 – Direction for designing details 5 and 6a

material	rope (mm)	plate dimensions (cm x cm)	plate thickness (cm)	fixing number and diameter	typical scheme
concrete	φ 12 – 20 55 x 2		1.0	6 <i>ø</i> 12 mm	• • • • • • •
squared stone blocks or tight masonry	φ 12 – 20	55 x 30	1.0	6 ø12 mm	0 0 0 0 0

Table 8 - Directions for designing details 6b and 9

		details 6b e	ə 9			detail 6b			
steel rope type S10 ZN	shackle		female eyebolt		bar	rectangular plate	fixings	equal-"L" shape angular	
diameter (mm)	A (mm)	WLL (*)	ISO thread WLL (*)		diameter	dimensions (cm x cm)	number and diameter (mm)	length L (cm)	
φ 12 -14	A26	3.25T o 3 1/4T	M30	3.6T	<i>ø</i> 30			15	
<i>ø</i> 16 - 18	A31	A31 4.75T o 4 3/4T		M36 5.1T		50 x 35	5 <i>ø</i> 12 mm	15	
<i>φ</i> 20	A36	6.50T o 6 1/2T	M42	7.0T	<i>φ</i> 42			20	

(*) WWL is a code stamped on the elements. When elements having the WWL code reported in this table are not available, elements with higher WWL code may be used.

WARNINGS

The figures reported in Tables 7 and 8 have been defined referring to the Hilti HDA-P M12 mechanical anchoring (masonry hole ϕ 22 mm),

or

Würth W-HAZ M12 mechanical anchoring (masonry hole ϕ 18 mm)

Other anchoring types may be used provided that their performances are equivalent or higher*.

When drilling holes, a minimum distance of 30 mm should be foreseen between the hole axis and the plate edge.

(*) When chemical plugs are used, in order to assure the same tensile and shear resistance as the mechanical steel plugs defined in Tables 7 and 8, information should be sought from the plug manufacturer in regard to masonry quality, bar diameter, steel class.

STEEL TENDONS: constructional details

STOP-TA

able 9 – Coordination between assemb	ly elements (global safety	factor equal to 2.5)	

P									
Steel S	rope type 10 Zn	Zinc plated RL thimble	CAV type clamp	O-O type turnbuckle	II B type turnbuckle	Orr	nega shackle for O-O type turnbuckle	Orr	ega shackle for II – B type turnbuckle
						(((0	
Diameter (mm)	Capacity (t) (**) (S.F. = 2.5)	Dimensions	Marking	ISO thread	ISO thread	A (mm)	WLL(*)	A (mm)	WLL(*)
<i>ф</i> 12	3.52	12 A18	marked 13	M22	A27	22	2.00T o 2 T	26	3.25T or 3 1/4T
<i>ϕ</i> 14	4.78	16 A23.5	marked 14	M24	A30	26	3.25T o 3 1/4T	31	4.75T or 4 3/4T
<i>ф</i> 16	6.24	16 A23.5	marked 16	M27	A33	26	3.25T o 3 1/4T	31	4.75T or 4 3/4T
<i>ф</i> 18	7.92	20 A29.5	marked 18	M33	A36	31	4.75T o 4 3/4T	36	6.50T or 6 1/2T
<i>φ</i> 20	9.76	20 A29.5	marked 19	M36	A39	36	6.50T o 6 1/2T	36	6.50T or 6 1/2T
<i>φ</i> 22	11.78	22 A32	marked 22	M39	A45	36	6.50T o 6 1/2T	43	8.50T or 8 1/2T
<i>φ</i> 24	14.02	24 A35	marked 26	-	A52	-	-	43	8.50T or 8 1/2T

(*) WWL is a code stamped on the elements. When elements having the WWL code reported in this table are not available, elements with higher WWL code may be used.

(**) these figures refer to the TECI [®] catalogue 2009. However, ropes and ancillary elements from other manufacturers may be used provided that their performances are not lower than those reported in the table.

Table 10 – Directions for rope tightening with clamps

ø rope (mm)	CAV clamp marking	N clamps	step p (cm)	overlapping S (cm)
12	13	5	7.5	35
14	14	5	8.5	40
16	16	5	10.0	45
18	18	5	11.0	50
20	19	5	12.0	55
22	22	7	13.0	85
24	26	7	14.5	95

Data and figures taken from TECI® catalogue 2009

STOP-TA

STEEL TENDONS: precautions and warnings

Tendons should never be loaded in exceedance of their capacity.

Tendons should always be inspected prior to their use.

Damaged tendons should never be used.

Tendons should never be bent close to sleeves, splices, cable terminals.

Steel ropes shall not be bent around small pins.

If, for example, a rope is bent around a pin whose diameter is equal to twice the rope one, the rope ultimate load is decreased from **40 to 60%**, thus reducing and loosing its capacity.

Consequently, in these cases, the use of suitable protections such as **thimbles and edge protectors** is advised.

STEEL TENDONS: additional directions

STOP-TA

USE OF STEEL ROPES AND THEIR ANCILLARY ELEMENTS

General directions

The choice should be made taking into account design instructions as well as assembling conditions of cables.

When "comfortable" working conditions are present, long cables may be used (50, 100, 200 m) thus limiting the discontinuity points.

When "uncomfortable" working conditions are present, short cables may be used (10, 20, 30 m) thus increasing the discontinuity points.

Preliminary checks

The preliminary cable check only consists of examining its length and the nominal cable diameter as well as the solidity and strength of ancillary elements. The cable should not show any signs of damage, severe wear or wires bending at any point. The rope diameter should be measured by a gauge, positioned as shown in figure.

Extremity eyelets assembly

The eyelet should be made as shown in figure,

the first clamp should be placed as close as possible to the eyelet and the others spaced by 5-6 times the rope diameter (see Table 8).

The junction between two cables should be done by mutually inserting a turnbuckle and two omega shackles (cable – eyelet – shackle – turnbuckle –shackle – eyelet – cable).

Tensioning

The cable may be tensioned in two phases: the first one consists in closing the cable as a ring or fastening it to fixed points using suitable devices (Tirfor, small tackles, etc.) providing large displacements of the extremities; the second one consists in tensioning the cable by operating all the turnbuckles, possibly in an even manner.

STOP-TA

STEEL TENDONS: general instructions

STEEL ROPES TENDONS AND HOOPS

Field of application:

Tendons and hoop systems applied to buildings damaged by earthquakes.

General assumptions

The measures described in this procedure are intended to restrain load bearing walls with a thickness up to 1 m.

At page 1/22 several solutions aimed at protecting the ongoing damage are shown. The various schemes are coded and explained in terms of applicability and for each of them the design parameters are pointed out.

Once the most suitable solution for a particular case has been defined, reference should be made to the relevant section for the chosen solution code.

For each solution, the assembly conditions are shown and the reference geometrical design parameters are defined.

After the evaluation of the geometrical parameters for a particular case, and taking into account the seismic class (see Annex 1), the elements dimensions should be selected according to the relevant tables.

The details shown in the diagrams that are in dashed circles can be found on the relevant pages from 9/22 to 17/22.

During the assembly of elements and the laying operations, the additional directions given in pages 18/22, 19/22, 20/22 e 21/22 apply.

WARNING

All the dimensional figures (rope and ancillary elements) and the proposed assembly solutions have been defined so that a minimum safety factor equal to 2.5 is assured for single elements and for the whole system.

All the dimensional figures given in this procedure should be intended as minimum design values.

In the execution phase, sections with larger dimensions or elements with higher capacity than prescribed may be used.

VADEMECUM STOP

BRACING OF COLUMNS WITH POLYESTER RATCHET STRAPS

ABRUZZO EARTHQUAKE 2009 COORDINATION TEAM FOR TEMPORARY WORKS

WORKING GROUP FOR THE VADEMECUM STOP under the supervision of Sergio Basti - Central director for emergency and urgent technical rescue manual licensed by note no. EM3064/5001-11 dated 2009-06-15

S.Grimaz (coordinator) L.Munaro, M.Cavriani, E.Mannino, C.Bolognese, M.Caciolai, L.Ponticelli, M.Bellizzi, A. D'Odorico, A.Maiolo

> With the contribute of: F.Barazza, P.Malisan, A.Moretti

Translated by: L. Ponticelli, S. La Mendola, E. Gissi and Keith Bellamy Section Leader, Urban Search & Rescue Hampshire Fire and Rescue Service, UK

BRACING OF COLUMNS WITH POLYESTER RATCHET STRAPS: sizing recommendations STOP-CP

LEVEL OF DAMAGE

II level

Evidence of vertical cracks

If no perceptible roughness is felt by a hand on the surface of the column Evidence of vertical and horizontal cracks and displacement of stones

If a perceptible roughness is felt by a hand on the surface of the column (mm) III level

Evidence of vertical and horizontal cracks and expulsion of stones

Evidence is present on the surface of the expulsion of stones and the roughness is felt (cm). Presence of Stones on the ground

Width of the straps: 50 mm (thickness min.: 2 mm) Spacing distance between the straps: $p_{f}(cm)$ (and maximum dimension of the column: d_{min}) Level of damage L Rectangular cross section Circular cross section d_{min} $L/d_{min} \le 2$ d_ L 45 ($d_{min} \le 90 \text{ cm}$) 40 ($d_{min} \le 90 \text{ cm}$) Ш 20 ($d_{min} \le 70 \text{ cm}$) 40 ($d_{min} \le 90 \text{ cm}$) ш 15 ($d_{min} \le 30 \text{ cm}$) 15 ($d_{min} \le 70 \text{ cm}$)

Table 1 – Spacing distance between the straps. Width of the straps: 50 mm

Table 2 - Spacing distance between the straps. Width of	f the straps: 75 mm
---	---------------------

	Width of the straps: 75 mi (thickness min.: 2 mm)	m				
	Spacing distance between the straps: $p_f(cm)$ (and maximum dimension of the column: d_{min})					
Level of damage	d _{min} Circular cross section	d_{min} L Rectangular cross section $L/d_{min} \le 2$				
I	45 (d _{min} \leq 90 cm)	40 (d _{min} \leq 90 cm)				
II	40 (d _{min} \leq 90 cm)	25 (d _{min} \leq 70 cm)				
111	20 (d _{min} \leq 70 cm)	15 (d _{min} \leq 40 cm)				

BRACING OF COLUMNS WITH POLYESTER RATCHET STRAPS: general instructions

STOP-CP

BRACING OF COLUMNS WITH POLYESTER STRAPS

Field of application

The use of this procedure is allowed only on masonry rectangular or circular columns that are within the prescribed measurements stated above. (diameter for the circular columns and the narrowest side for the rectangular columns) less than 90 cm and with a ratio between the sides less than 2.

General assumptions

The aim of the intervention is to increase the load bearing resistance of a column by the reduction of its transverse displacements.

Before placing the polyester ratchet straps clean all the surfaces of the columns but don't remove structural elements.

Rounded L-section steel is preferred to avoid cutting the straps. All the L-section steel must be placed on 2.5 cm thick planks to absorb the irregularities of the surfaces.

Light colour antioxidant protective paint for the L-section steel is preferred to reduce the solar heating.

The ratchets must be placed according to the correct sequence as shown on page 1/3. Tighten the ratchet straps by hand.

Guidance for bracing columns with polyester straps

After evaluating the level of the damage, it is possible to define the maximum spacing between the polyester straps following tables 1 and 2 on page 2/3.

Steel plates are necessary to distribute the transverse loads.

To improve the effectiveness of the system it is possible to use more steels. For rectangular columns, the steels placed on the sides must be thickened.

INTENTIONALLY BLANK PAGE

VADEMECUM STOP

INTERLOCKED PACKING OF WALLS

ABRUZZO EARTHQUAKE 2009 COORDINATION TEAM FOR TEMPORARY WORKS

WORKING GROUP FOR THE VADEMECUM STOP under the supervision of Sergio Basti - Central director for emergency and urgent technical rescue manual licensed by note no. EM3064/5001-11 dated 2009-06-15

S.Grimaz (coordinator) L.Munaro, M.Cavriani, E.Mannino, C.Bolognese, M.Caciolai, L.Ponticelli, M.Bellizzi, A. D'Odorico, A.Maiolo

> With the contribute of: F.Barazza, P.Malisan, A.Moretti

Translated by: L. Ponticelli, S. La Mendola, E. Gissi and Keith Bellamy Section Leader, Urban Search & Rescue Hampshire Fire and Rescue Service, UK

INTERLOCKED PACKING OF WALLS: Placement and spacing

A) Drilling the wall. Diameter of the holes: \mathcal{O}_{bar} + 2mm

C) Place 5x20 wooden planks as shown on both the sides of the wall. The steel bars can be in contact with the wooden planks to support them.

- auxiliary boards 2.5x12 to wooden be removed
 - E) Place steel plate (thickness 4 mm) on both the sides of the wall on every steel bar (hole diameter = $Ø_{bar}$ + 2 mm).

perforated steel plates 20x20 (thickness 4 mm)

B) Insertion of the steel bars with diameter as in Table 1: $Ø_{bar}$

D) Place two 10x10 wooden planks on both the sides of the steels vertically and on both the sides of the wall.

F) Tensioning of the bars with the "RAPID" system showed on page 1/3

Гable	1 –	Sizing	of the	ribbed	steel	bars
-------	-----	--------	--------	--------	-------	------

Thickness of the wall (s _m)	Ribbed bars: minimum diameter (Ø _{bar}) (mm)
s _m ≤ 50 cm	Ø6
50 cm < s _m ≤ 80 cm	Ø8

INTERLOCKED PACKING OF WALLS: general instructions

STOP-IP

INTERLOCKED PACKING OF WALLS

Field of application

The use of this procedure is only allowed on masonry walls less than 80 cm thick.

General assumptions

The aim of the intervention is to increase the load bearing resistance of a wall by the reduction of its transverse displacements. The tensioning of the steel bars must be done on the side of the wall nearer to the exit route of the building. For the safety of the operators this intervention is not allowed on heavily damaged walls.

Before stiffening the wall it is necessary to shore the ceiling slabs to reduce the loads on the wall. The shore can be removed at the end to transfer the loads to the reinforced wall.

<u>Don't</u> cut the steel bars but bend them when finished. It might be necessary to re-tension them in the future.

Instructions for the interlocked packing system

Based on the thickness of the wall (s_m), it is possible to calculate the diameter of the steel bar required using table 1 on page 2/3. Erect the wooden system as shown on page 2/3 and then tension the steel bars as shown on page 1/3.

PROHIBITIONS	
Ø	 Don't drill in to walls of heritage buildings or similar if not authorized. The use of this procedure is not allowed on heavily damaged masonry walls.
DANGERS	
	 Before drilling into the wall check for the presence of utilities (such as gas, power cables, water, etc.). Remove any damaged or loose items that could fall from height before drilling in to the wall.

INTENTIONALLY BLANK PAGE