VETROLIGNUM Workshop – 15/02/2019 University of Zagreb – Faculty of Civil Engineering

Structural Glass Systems under Fire: Overview of Design Issues, Experimental Research and Developments

UNIVERSITÀ DEGLI STUDI DI TRIEST

Chiara Bedon

Asst. Prof. – University of Trieste Department of Engineering and Architecture Italy chiara.bedon@dia.units.it

Introduction

Glass structures under ordinary temperatures

Glass structures under ordinary temperatures

KEY MECHANICAL PROPERTIES:

- GLASS
 - MOE
 - Tensile resistance
 - Compressive resistance (local effects)

> INTERLAYERS

- Reference MOE (load duration)
- Temperature effects
- Other local/long term aspects

CONNECTIONS Mechanical? Adhesives? Materials? Etc.

Glass structures under ordinary temperatures

Thermal shock

area a temperatura inferiore

Facades

in fire conditions

in fire conditions

Material properties

T (°C)

- FEW experimental data of literature are available to assess the tensile resistance variation of ordinary glass
- Based on Kerper & Scudieri (1966) on HS and FT glass:
 - no losses for temperatures up to 375C (less than 5% variation, compared to room temperature), for FT specimens
 - substantial decrease for temperatures higher than 500C (fire exposure of several hours) and 550C (15 minutes of fire exposure)
 - Chemically HS glass showed a pronounced resistance degradation with the temperature increase, up to 5% loss at 200C (500 hours of fire exposure), 5.8% at 260C (500 hours) and 100% at 600C (6 hours).
- NO experimental data are available to assess the compressive resistance of glass under fire / heating

Glass THERMAL RESISTANCE....based on standards

GLASS TYPE	LIMIT VALUES (°C)			
	As-cut or arrissed	Smooth ground	Polished	
Float or sheets ≤12mm thick	35	40	45	
Float 15mm or 19mm thick	30	35	40	
Float 25mm thick	26	30	35	
Patterned	26			
Wired patterned or polished wired glass	22			
Heat strengthened	100			
Tempered	200			
Laminated	Smallest value of the component panes			

TABLE 2 Allowable temperature gradients, according to prEN thstr:2004 provisions

Glass THERMAL RESISTANCE....based on experiments

Thermal conductivity, specific heat

+ other materials interacting with glass

Experiments!! -FIRE- Walls/facades/enclosures

Reference	Test typology / setup	Specimen size / loading	Glass type	Additional FR tools
Mejicovsky (2007)	Frame supported, double LG (special setup for heat transmission)	F/T	SLS (FT)	-
Machalická et al (2016)	Frame supported, double LG	F/T	FR	Gel-filling layer
Manzello et al (2007)	Frame supported, double LG + monolithic (furnace)	F/T	FR	Gel-filling layer
Yang et al (2011)	Frame supported, monolithic	F/T	FR	-

Experiments!! -FIRE- Walls/facades/enclosures

Experiments!! -FIRE- Floors & overheads

Reference	Test typology / setup	Specimen size / loading	Glass type	Additional FR tools
Siebert and	LG, frame supported	F / n.a.	n.a.	n.a.
Maniatis (2008)				
Davis (2013)	LG, frame supported	F/M	SLS (FT) bonded	Liquid laminating film
	a cut a company of the second		to FR glass	

Experiments!! -FIRE- Window retrofit

Reference	Test typology / setup	Specimen size / loading	Glass type	Additional FR tools
Koudijs and Csoke (2013)	Double glazing unit	F / T	SLS (AN, HS)	Low-E coating
Misawa et al (2013)	Double glazing unit	F/T	SLS (AN)	Low-E coating + refractory film
		Glass 1	Glass 2	

UV protection layer

`Silicate soda-based material

→ Double glazing ↔

Cavity

 \leftarrow

Refractory film

Experiments!! -FIRE- Beams

Reference	Test typology / setup	Specimen size / loading	Glass type	Additional FR tools
Veer et al (2001)	4 point-bending; monolithic, triple LG, insulated + segmented beams (glass flame, bespoke setup)	S / M	SLS (AN)	Intumescent protective coating
Bouka et al (2003)	4 point-bending; triple LG (glass flame, bespoke setup)	S / M	SLS (AN), FR glass	Epoxy interlayers
Louter and Nussbaumer	4 point-bending; triple LG	F / M	SLS (AN, HS, FT)	-

...and further ongoing experimental research...

Glass-timber beams in fire

RI. SE

Glass panels under radiant heating (SMALL SCALE)

Samples 185 × 285 mm, annealed glass

Debuyser, M., Sjöström, J., Lange, D., Honfi, D., Sonck, D., & Belis, J. (2017) Behaviour of monolithic and laminated glass exposed to radiant heating *Construction and Building Materials, 130,* pp.212–229

Glass panels under radiant heating (SMALL SCALE)

Debuyser, M., Sjöström, J., Lange, D., Honfi, D., Sonck, D., & Belis, J. (2017) Behaviour of monolithic and laminated glass exposed to radiant heating *Construction and Building Materials, 130,* pp.212–229

Glass panels under radiant heating (LARGE SCALE)

Numerical analysis of glass systems under thermal exposure

Potentials and limits

Simplified one-dimensional models (1D)

Radiant heating

Diffusive heat transfer elements

Simplified one-dimensional models (1D)

Radiant heating

UnExp

NO size effects

Refined models (full 3D)

Fire (furnace test)

Uncoupled thermo-mechanical analyses

Fire (furnace test)

Premature glass failure in the region of steel supports

Support

Fire (furnace test)

Mid-span

Fire (furnace test)

Conclusions

- Structural glass is highly susceptible to thermal loads, that could add in combination with mechanical design actions, derive from extreme climatic conditions, and/or result from accidental events (fire)
- Actually, major limits are represented by the limited knowledge of thermo-physical and mechanical properties under extreme temperature scenarios
- Further uncertainty can derive from glass in contact with other common constructional materials, like for example in the region of supports and connections
- As a result, experiments at all the levels have added value for research and design developments (materials, members, systems, assemblies)
- Within such a kind of investigation, Finite Element numerical models can represent a robust tool and capture the actual observations of experiments / real events

