THE REACTIVITY OF WOODY ASH IN COMPARISON WITH SLAG

Prof. Dr. E.A.B. Koenders
Institute of Construction and Building Materials
TU Darmstadt
Germany
Introduction

Content
1) Introduction
2) Experimental part
3) Results of testing and discussion
4) Conclusions and future work

WiB Microlab
1) Introduction
2) Experimental part
3) Results of testing and discussion
4) Conclusions and future work

• Experimental
 - Set-up
 - Slag comparison
 - Sample preparation
 - Thermogravimetric analysis

Results
 - Chemically bounded water
 - Calcium hydroxide
 - Pore volume
 - Compressive strength
Experimental: Plan

<table>
<thead>
<tr>
<th>Material</th>
<th>Replacement Rates</th>
<th>w/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM I 52.5 R</td>
<td>3, 5, 10, 20, 30, 40, 60, 80, 95%</td>
<td>0.35, 0.45</td>
</tr>
<tr>
<td>Slag 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drinking water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM I 52.5 R</td>
<td>10, 20, 40, 60, 80, 100%</td>
<td>0.45</td>
</tr>
<tr>
<td>Slag 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drinking water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM I 42.5 N</td>
<td>10, 15, 20, 100%</td>
<td>0.5</td>
</tr>
<tr>
<td>Woody ash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drinking water</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stop after 1 day, 7, 14, 28, 56, 365 days
Experimental: Slag comparison

<table>
<thead>
<tr>
<th>Components [mass %]</th>
<th>Slag 1</th>
<th>Slag 2</th>
<th>WA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>42.44</td>
<td>41.22</td>
<td>41.3</td>
</tr>
<tr>
<td>SiO₂</td>
<td>35.85</td>
<td>36.18</td>
<td>26.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>11.38</td>
<td>12.13</td>
<td>4.72</td>
</tr>
<tr>
<td>MgO</td>
<td>6.00</td>
<td>7.23</td>
<td>7.5</td>
</tr>
<tr>
<td>S²⁻</td>
<td>1.25</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.78</td>
<td>0.74</td>
<td>0.34</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.37</td>
<td>0.55</td>
<td>7.86</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.22</td>
<td>0.39</td>
<td>1.95</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.41</td>
<td>0.39</td>
<td>2.04</td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.255</td>
<td></td>
<td>0.63</td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Cl⁻</td>
<td>0.014</td>
<td>0.04</td>
<td>0.054</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.17</td>
<td>0.04</td>
<td>0.68</td>
</tr>
<tr>
<td>Mn₂O₃</td>
<td>0.283</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- CaO/SiO₂ (Slag 1) > CaO/SiO₂ (Slag 2)
- Al₂O₃ (Slag 2) > Al₂O₃ (Slag 1)
- MgO (Slag 2) > MgO (Slag 1)

Slag 2 is finer

<table>
<thead>
<tr>
<th>Blaine value [cm²/g]</th>
<th>Slag 1</th>
<th>Slag 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4000</td>
<td>4600</td>
</tr>
</tbody>
</table>

\[d_{50}(WA) = 146\ \text{um}\]
Experimental: Sample preparation

Content
1) Introduction
2) Experimental part
3) Results of testing and discussion
4) Conclusions and future work

- 1) Mixing
- 2) Storing
- 3) Hand-milling
- 4) Treating with acetone
Experimental: Sample preparation

Content
1) Introduction
2) Experimental part
3) Results of testing and discussion
4) Conclusions and future work

Before you start: When / How to stop hydration?
Hydration Stoppage: Different Techniques

Content
1) Introduction
2) Experimental part
3) Results of testing and discussion
4) Conclusions and future work
Experimental: Thermogravimetric analysis

- Corundum crucible filled with 40 - 50 mg sample powder
- Nitrogen used as inert gas

• Temperature programme:
 - 30 minutes at 40 °C and
 - Heating to 1000 °C with a constant heating rate of 20 °C per minute
Results: Thermogravimetric analysis

Ca(OH)$_2$ disintegrates between 400 – 500 °C

Ca(OH)$_2$ → CaO + H$_2$O

Chemically bounded water

Ca(OH)$_2$
Results: Chemically bounded water (BW)

Chemically bounded water Slag 1 (w/b = 0.45)

- BW removed from 40 - 600 °C
- Largest increase from day 1 to 7
- Decrease with higher slag content
- (Slag > 20 mass % and early age)

Content
1) Introduction
2) Experimental part
3) Results of testing and discussion
4) Conclusions and future work
Results: Calcium hydroxide (CH)

- CH decomposes from 360 - 550 °C (tangential method was used)
- CH content decreases with increasing slag content
- CH content increases with time
- w/b = 0.35 lower CH content when slag content ≤ 20 %
Results: Consumption of calcium hydroxide

Consumption of Ca(OH)$_2$ Slag 1 (w/b = 0.45)

Consumption = Ca(OH)$_2$ produced by cement (reference) - Ca(OH)$_2$ measured
Results: Calcium hydroxide slag (S) versus Woody ash (WA)

1) Introduction
2) Experimental part
3) Results of testing and discussion
4) Conclusions and future work
Results: Calcium hydroxide (CH)

- Logarithmic scale
- CH content increasing linearly with log of time
- Slag 2 slightly higher CH content
Results: Calcium hydroxide regression model

Regression model:

$$CH = \beta_0 + \beta_1 \cdot Slag + \beta_2 \cdot \log(t)$$

$CH = \text{Ca(OH)}_2 \ [g / 100g \text{ unhyd. binder}]$

$Slag = \text{slag content of initial mixture [mass \%]}$

$t = \text{hydration time [days]}$

<table>
<thead>
<tr>
<th>Slag</th>
<th>w/b</th>
<th>β_0</th>
<th>β_1</th>
<th>β_2</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slag1</td>
<td>0.35</td>
<td>15.56</td>
<td>-0.19</td>
<td>1.66</td>
<td>0.9556</td>
</tr>
<tr>
<td>Slag1</td>
<td>0.45</td>
<td>16.73</td>
<td>-0.22</td>
<td>1.83</td>
<td>0.9462</td>
</tr>
<tr>
<td>Slag2</td>
<td>0.45</td>
<td>18.14</td>
<td>-0.22</td>
<td>1.45</td>
<td>0.9604</td>
</tr>
</tbody>
</table>

Results up to 28 days included.
- Pore volume measured with pycnometer
- Decreasing pore volume with time
- Porosity increases for slag content > 30 %
Additional results: Pore volume

- After 1 day higher porosity with increasing exchange rate

- After 56 days the minimum calculated porosity is with 40% exchange rate
Additional results: Compressive strength

Compressive strength Slag 1 (w/b = 0.35)

Compressive strength Woody ash (w/b = 0.5)

Content
1) Introduction
2) Experimental part
3) Results of testing and discussion
4) Conclusions and future work
Conclusions

- Ca content of slag and WA are nearly the same

- CH consumption for WA has almost negligible up to 20%

- Reactivity of WA differs from slag

- Pore structure depending on replacement ratio

- For WA replacement rate up to 20% has constant impact on strength
Greetings from Darmstadt!

Content
1) Introduction
2) Experimental part
3) Results of testing and discussion
4) Conclusions
THANK YOU FOR YOUR ATTENTION

Mail: koenders@wib.tu-darmstadt.de

www.wib.tu-darmstadt.de

Transformation of Wood Biomass Ash into Resilient Construction Composites