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Abstract 

This paper presents some examples of three-dimensional static equivalency using descriptive geometry 

and Grassmann algebra. In many static problems, it is convenient to replace existing force system with 

another, usually simpler, statically equivalent force system. Procedures for replacing two forces with 

two other forces which fulfil certain conditions (one of the forces on a given line or a force through a 

given point and a force in a given plane, including special cases with a point or a plane at infinity), thus 

providing unique replacement of a system of forces with two forces, and the procedure for replacing a 

single force with three components on three skew lines are described in the main part of the paper. 

Keywords: 3D graphic statics, static equivalency, descriptive geometry, Grassmann algebra, Plücker coordinates, line 

geometry 

1. Introduction 

The revival of the interest in graphic statics and its extensions into the third dimension is motivated by 

the understanding that it is a suitable and valuable tool in the design of free-form structures, but also in 

engineering education. It is a broad field of research which can be approached in various ways, as 

witnessed, for example, by numerous articles presented on sessions dedicated to graphic statics on 

former IASS conferences and by the recent volume of International Journal of Space Structures guest 

editors of which were P. Block, C. Fivet and T. Van Mele [1].  

When a system of external forces is acting on a body, it is easier to understand their overall effect on the 

body if they are replaced by a simpler system having the same external effect. Two systems of forces 

are statically equivalent if their contribution to the conditions of static equilibrium is the same. It is well 

known that a general system of forces in space can be replaced by an equivalent system containing a 

resultant force and a resultant couple or by an equivalent system containing two forces called conjugate 

forces (and lines along which they act are called conjugate lines). Geometric procedures for replacing a 

system of three skew (i.e. mutually nonintersecting) forces with two skew forces was described by 

Schrems and Kotnik [2] and by D’Acunto et al. [3]. Fourth force can be added to these two forces and 

the new system of three forces can again be replaced with two forces. Thus, a system of skew forces can 

be reduced to two forces. However, as noted by D’Acunto et al. [3], this reduction is not unique – there 

is multiple infinity of possible solutions. Additional conditions which ascertain unique reduction are 

reviewed in the third section of this article. Besides, an interesting example of a resolution of a single 

force into a sum of three skew components is presented.  

Graphical procedures for replacing given system of forces with some other system are carried out using 

operations of descriptive geometry. We concentrate on operations of descriptive geometry because it 

emphasizes “visual thinking” which is, from the educational standpoint at least, essential for graphical 

statics. Using Grassmann algebra, procedures of descriptive geometry can be readily translated into 
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algebraic expression (Grassmann [4], Whitehead [5]) and then into computer program code. Grassmann 

algebra and Plücker coordinates of a line are very briefly introduced in the next section.  

2. Grassmann algebra 

A line can be specified as a span of two points and a plane as a span of three points or a point and a line. 

A line can also be specified as an intersection of two planes, while a point can be specified as an 

intersection of three planes or a line and a plane. If they intersect, two lines specify a plane and a point. 

In Grassman algebra spans and intersections are defined as products, progressive and regressive, of 

points, lines and planes (Grassmann [4], Whitehead [5]).  

Using homogeneous coordinates, points are written in the form X = (x0, x1, x2, x3). If x0 ≠ 0, point is 

Euclidean, and if x0 = 0, point is at infinity. As X and aX, with a ≠ 0, denote the same point, Euclidean 

point can be written in the form (1, x, y, z), where x, y, z are its Cartesian coordinates. A plane defined 

by equation u0x0 + … + u3x3 = 0 can be expressed in coordinate form υ = (u0, u1, u2, u3), where (u1, u2, 

u3) is the normal vector of the plane. A plane at infinity has coordinates υ = (u0, 0, 0, 0), with u0 ≠ 0. 

Spans and intersections of points, lines, and planes can be computed using progressive and regressive 

products. In particular, a line, as a span of points X and Y, can be expressed in the form l = [X Y] = [(x0, 

x1, x2, x3) (y0, y1, y2, y3)] = (l01, l02, l03, l23, l31, l12), where lij = xiyj – xjyi are homogeneous coordinates of a 

line, called Plücker coordinates (Plücker [6], Pottmann and Wallner [7]). Analogously, as an intersection 

of two planes, a line can be expressed in the form l* = [α β] = (l01
*, l02

*, l03
*, l23

*, l31
*, l12

*), where lij
* are 

called axis coordinates. It can be shown that (l01, l02, l03, l23, l31, l12) = (l23
*, l31

*, l12
*, l01

*, l02
*, l03

*).  

According to the principle of transmissibility, a force can be shifted along its line of action. Therefore, 

the force is considered as a line-bound vector with Plücker coordinates F = (f01, f02, f03, f23, f31, f12). The 

first three coordinates represent vector f of the force F, and the second three represent moment vector 

m of f about the origin of the coordinate system. It should be noted that force coordinates fij are not 

homogeneous, because forces have definite intensities. Also, it can be shown that f ∙ m = 0, where ∙ 

denotes dot product (the same holds for line coordinates).  

3. Examples of the static equivalency 

In this section we describe some examples of static equivalency using descriptive geometry. To perform 

and visualize described procedures, we are developing a computer program based on algebraic 

translations of descriptive geometry operations. The code is written in GhPython [8] (Python interpreter 

component and plug-in for Grasshopper [9]) and the procedures are visualized in Rhinoceros [10].  

Most of our geometric constructions can be regarded as partial three-dimensional extensions of 

construction of funicular polygon (in genuine Varignon’s meaning of the words – rope stretched by 

applied forces), based on two principles: (1) single force can be resolved into two components along 

two given lines if and only if its line of action and the two given lines are concurrent and coplanar, and 

(2) when constructing funicular polygon, each of two given forces is resolved into two components in 

such a way that one component of the first force and one component of the second force cancel each 

other (these two components lie on the same line and are equal in magnitude, but opposite in sense). 

Schrems and Kotnik [2] and D’Acunto et al. [3] have shown how a system of forces can be reduced to 

two forces. As this reduction is not unique, two replacements of two forces with two other forces, 

restricted in some way, are described in subsections 3.2 and 3.3.  

3.1. Replacing single force with a force acting at a given point and a force lying in a given plane 

As a preparation for the procedure described in subsection 3.2 we give geometric “translation” of the 

proof that “[a]ny force can be resolved into a sum of two forces, of which one passes through a given 

point and one lies in a given plane, which does not contain the point”, as given by Whitehead [5]. 

A plane σ is defined by the given point A and the line of action s of the given force S (in algebraic terms: 

progressive product σ = [A s]). First component of the force S acts along the line r, which is the 

intersection line of the plane σ and a given plane β (regressive product: r = [σ β]). Second component 
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acts along the connecting line p of the point A and the intersection point P of the line s and the plane β 

(regressive and then progressive product: P = [s β], p = [A P]). Previous steps were performed in the 

form diagram and following steps will be performed in the force diagram. From arbitrarily chosen point 

O vector s of the force S is drawn; head of s is the point B (B = O + s). Lines r’ and p’ are drawn through 

O and B parallel to the lines r and p (r’ = [O r], p’ = [B p], where r and p are some vectors on lines r and 

p). Lines r’ and p’ intersect in the point C (C = [r’ p’]). Vectors s1 and s2 of force components S1 and S2 

on lines r and p are s1 = C – O and s2 = B – C.  

3.2. Replacing two forces with a force acting at a given point and a force lying in a given plane 

Whitehead [5] also proved that “any system [of forces] can always be represented by two forces of which 

one lies in a given plane, and one passes through a given point not lying in the plane”.  

Using the procedure described in previous subsection, each of two given forces can be replaced with a 

force acting at the given point and a force lying in the given plane, and then a resultant force acting at a 

given point and a resultant force acting in the given plane can be found.  

We will describe another procedure, resembling funicular polygon construction. Let S1 and S2 be given 

forces acting on lines s1 and s2 (figure 1.a; in this and following figures: left form diagram, right force 

diagram). We define the plane σ1 by the given point A and the line s1, and the plane σ2 by the line s2 and 

some point A1 arbitrarily chosen on the line s1. The line s12 is the intersection of planes σ1 and σ2. The 

component S12 of the force S1 and the component S21 of the force S2 act along the same line s12 and 

cancel each other. Second component S11 of the force S1 acts along the line p1 connecting the points A 

and A1. Now, we can resolve the force S2 in the plane σ2. In that way given forces S1 and S2 are replaced 

with the forces S11 and S22 (figure 1.b). 

The line of action of the force S22, line s22, intersects the given plane β in the point B. The line p2 is the 

join (or span) of the points A and B (figure 1.c). We define the plane σ22 by the lines s22 and p2. Planes 

σ22 and β intersect in the line p3. Now, we resolve the force S22 into two components S22,1 and S22,2 along 

the lines p2 and p3 (figure 1.d), and the force S11 into components S11,1 and S11,2= − S22,1 (figure 1.e). At 

the end of the procedure, only the components S11,1 = R1, a force which acts at the given point A, and 

S22,2 = R2, a force which lies in the given plane β (figure 1.f), remain.  

 

Figure 1: Replacing two forces with a force acting at a given point and a force lying in the given plane 
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Furthermore, the force R1 can be resolved into three components acting at the point A and the force R2 

can be resolved into three nonconcurrent components acting in the plane β. In particular, the point A can 

be one of the vertices of a tetrahedron, whose opposite face lies in the plane β. 

We will rename forces R1 and R2 into S1 and S2 (figure 2.a). Point A is one vertex of the tetrahedron. 

Force S1 will be resolved into three components acting along the given lines s11, s12 and s13, which are 

the edges of the tetrahedron concurrent with A. The other three vertices are the intersections T1, T2 and 

T3 of the lines s11, s12 and s13 with the plane β. Force S2 will be resolved into three components acting 

along lines s21, s22 and s23, which are the edges of the tetrahedron in the plane β (figure 2.d).  

 

Figure 2: Replacing each of two forces with three forces 

The procedure for replacing a single force with three forces acting at the same point (figure 2.b) is 

described by Jasienski et al. [11] and by Saliklis and Gallion [12]. (The procedure using descriptive 

geometry is described by Föppl [13].) To resolve the given force S2 in the plane β into three components 

acting on nonconcurrent lines s21, s22 and s23 we use the well-known Culmann’s method (Culmann [14]) 

(figure 2.c). Reversion of obtained six forces gives equilibrating forces; their lines of action can be the 

axes of bars with spherical joints which are supports of some structure.  

3.2.1. First special case: A is a point at infinity  

Let A be the point at infinity (figure 3.a). Representation of a point at infinity using homogeneous 

coordinates is A = (0, a1, a2, a3). Plücker coordinates of the line a through the point A and the origin are 

a = (a1, a2, a3, 0, 0, 0). As all lines containing the point A are parallel to the line a, given forces S1 and 

S2 will be replaced with a force acting along a line parallel to the line a and a force acting in the given 

plane β. 

We begin with the plane σ1 in which the force S1 is being resolved into components S11 and S12. This 

plane is defined by the line s1 and the line p1 which passes through a chosen point A1 on the line s1 and 

is parallel to the line a. Therefore, the plane σ1 is also parallel to the line a. A plane σ2 is defined as in 

the general case (figure 3.b). 

Line p2 is the join of the given point A at infinity and the point B. Therefore, the line p2 is parallel to the 

lines a and p1 (figure 3.c). As before, the force S22 is resolved into a component S22,1 acting along the 

line p2 and a component S22,2 acting along the intersection p3 of the planes β and a plane σ22 (figure 3.d). 

Now, we resolve the force S11 in the plane σ11 which is defined by parallel lines p1 and p2. One of the 

components, S11,2= −S22,1, acts along the line p2. As the line p1 is the line of action of the force S11, force 

component S11,1 acts along a line parallel to the lines p1 and p2 (figure 3.e). Location and magnitude of 
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the component S11,1 can be obtained using the well-known construction of a planar funicular polygon (in 

the plane σ11). 

 

Figure 3: Replacing two forces with a force acting at a point at infinity and a force lying in a given plane 

Line of action of the force S11,1 = R1 is parallel to the line p1, and therefore to the line a. The second 

remaining component S22,2 = R2 lies in the given plane β (figure 3.f). 

3.2.2. Second special case: β is a plane at infinity 

Using homogeneous coordinates, a plane at infinity can be expressed in the form β = (β0, 0, 0, 0). 

First steps of the procedure (a replacement of given forces S1 and S2 with forces S11 and S22) are the 

same as in the general case (figure 4.b). 

  

Figure 4: Replacing two forces with a force acting at a given point and a force lying in a plane at infinity 
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Point B, the intersection of the line of action s22 of the force S22 and the given plane at infinity β, is the 

ideal point of the line s22. Line p2, the join of the points A and B, along which a component S22,1 acts, is 

the line parallel to the line s22 (figure 4.c). Planes σ22 and the given plane at infinity β intersect in a line 

at infinity p3, hence a component S22,2 of the force S22 acts at infinity. In fact, force S22,2 shrinks to a 

point (it can be said that it is infinitesimal): lines p2 and s22 are parallel and therefore intersect plane at 

infinity in the same point.  Obviously, this force cannot be shown in a figure. However, from the 

expression S22 = S22,1 + S22,2 follows S22,2 = S22 − S22,1. The forces S22 and S22,1, equal in magnitudes, 

opposite in sense and acting along parallel lines, form a force couple. Therefore, an infinitesimal force 

acting on the line at infinity can be represented by a force couple.  

If, as in the general case, S11,2 = − S22,1, we can in this special case replace given forces S1 and S2 with 

the force R1 = S11,1 and the force couple (S11,2, S22) (figures 4.c and 4.d). 

3.3. Replacing two forces with two forces of which one lies on a given line 

In general, a line has one and only one conjugate line with respect to a given system of forces (Möbius 

[15], Whitehead [5]). Therefore, only one line of the conjugate pair can be chosen arbitrarily.  

The line s0 is a given line and lines s1 and s2 are lines of action of the given forces S1 and S2 (figure 5.a). 

We chose points A1 and A2 on the lines s1 and s2 and connect them with the line s12. The plane σ0 is 

defined by the given line s0 and the point A1, the plane σ1 by the lines s1 and s12, and the plane σ2 by the 

lines s12 and s2. Planes σ0 and σ1 intersect in the line s01 (figure 5.b). 

We resolve the given force S1 into components S11 and S12 acting along the lines s0 and s12. If, as before, 

S21= − S12, the component S22 of the force S2 can be obtained (in the plane σ2). In this way the given 

forces S1 and S2 are replaced with forces S11 and S22 (figure 5.c). 

 

Figure 5: Replacing two forces with a force R1 lying on a given line s0 and a force R2 
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The line s01, along which the force S11 acts, intersects the given line s0 at the point A0. The plane σ3 is the 

join of the point A0 and the line s22, along which the force S22 acts. Planes σ0 and σ3 intersect in the line 

s03 (figure 5.d). 

The lines s0, s01 and s03 are coplanar and lie in the plane σ0. Therefore, the force R1, acting along the line 

s0, is determined by the conditions that one of its components is R11 = S11 (acting along the line s01) and 

the other component is R12 acting along the line s03. The force R2 is a resultant force of the forces R21 = 

− R12 and S22 (figures 5.e and 5.f). 

3.4. Replacing a single force with three forces acting along generators of a regulus 

As shown in figures 2.b) and 2.c), a force can be resolved into a sum of three concurrent noncoplanar 

forces or into a sum of three coplanar nonconcurrent forces. A force can also be resolved into a sum of 

three skew forces if they act along the generators of the same system of a hyperboloid (figure 6.c) 

(Möbius [15]).  

Let the force S and three lines s1, s2 and s3 be given (figure 6.a left). Since all lines are known, the 

procedure is carried out in the force diagram (figure 6.a right). First, at the tail of the force S we place 

line s1’ parallel to the line s1 in the form diagram, and at its head we place line s3’ parallel to the line s3 

in the form diagram. 

Through each point in space there is one and only one transversal of two skew lines. The same is the 

case with points at infinity, which means that a transversal of two skew lines, parallel to the third line, 

can be found. Therefore, we can close a three-dimensional force polygon in the force diagram by the 

line s2’ parallel to the line s2 in the form diagram (figure 6.a right). Transversal of lines s1’ and s3’, 

parallel to s2, can be constructed as the intersection of two planes, both parallel to s2, one containing s1’ 

and the other containing s3’ (figure 6.a right). The forces S1, S2 and S3, which act along the lines s1, s2 

and s3 in the form diagram, are determined by the edges of the obtained closed force polygon in the force 

diagram (figure 6.b). 

 

Figure 6: Replacing a single force with three forces acting along generators of a regulus 

4. Conclusion 

We presented some examples of three-dimensional static equivalency using descriptive geometry and 

Grassmann algebra. Descriptive geometry can be thought of as “visual language”, while Grassmann 

algebra enables translation of operations of descriptive geometry (even with elements at infinity) into 

algebraic expression and thereafter into program code. 

We described two procedures for replacing two forces with two other forces which fulfil certain 

conditions, thus providing unique replacement of a system of forces with two forces. One case of further 

resolution of these forces to fulfil specified boundary conditions was also described: three reactions act 
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on three given nonconcurrent lines in a plane and three reactions act on three given noncoplanar lines 

through a point and not lying in a plane; point can be at infinity. Future work will address the analysis 

and possible classification of other dispositions of lines on which reactions act. It is well known that 

externally statically determinate structure requires six support conditions, for example six bars with 

spherical joints whose axes are independent lines. In some dispositions of axes reactions can be 

determined by “direct” geometrical procedure, as in the described case or in the case with three axes 

through the first point, two axes through the second point and one axis through the third point (D’Acunto 

et al. [3], Saliklis and Gallion [12]). Some dispositions, on the other hand, require a two-step procedure 

and some, presumably, even a multi-step procedure; for example, reactions on three pairs of axes through 

three points can be determined by Henneberg’s method of the substitution of bars (Henneberg [16]).  
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