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* Novel, Efficient Iterative Procedure for the Structural Analysis — key idea
and initial results

 PhD research
» Inexact lterated Force Density Method for cable-nets

« Extension including unstrained lenght constraint
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Novel, Efficient Iterative Procedure for the Structural Analysis —
Generalisation of Modern Methods

. Novel fast iterative solver for structural analysis.

. The discretized Ritz method is applied at each
iteration step.

. Suitable coordinate vectors are generated forming a
subspace, within which the local energy minimum is
sought.

. In addition to its own characteristics, it also has a
feature of generality, as many iterative methods are
only special cases of this approach (i.g. CG)
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Necessary: K, f, ¢ stiffness matrix, load vector, stopping criterion
1. Result: u displacement vector
2. i« Ostepcounter
3. u, < Oinitial solution null — vector
4. r <« fresidual equal to load
5. repeat
6. @« [GDH GDQJ a)m] definition of coordinate vectors
7. K; « o K o,formation of a "small" system matrix
B. T« ®/r; formation of a "small" right hand side vector
9, aj « K[1Ff solution of a "small" system
10. Bu, <« @ a determination of an solution increment
11. u,, < u,+ Bu, calculation of a new displacement
12. r,, « f-Ku,_, new residual
13. i<« i+ 1increase of the step counter
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Lazarevi¢, D., Josip, D. (2017): Iterated Ritz Method for solving
systems of linear algebraic equations
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3. Rector’s Palace
Dubrovnik

2. Roof structure of the
future Kantrida
Stadium in Rijeka

1. Underground quarry in
Kanfanar, Istria with the
surrounding area

Number of steps until convergence is reached 4. Sports hall dome
f Zadar
Ex. | Num-o CG CGD IRP(2) IRP(4) | IRP(6) IRP(10)
unknowns
1. 206.527 >10% 53.002 | 24.995 8 608 5166 2 871
2. 69.984 11 091 8 966 4142 1381 888 498
3. 8.955.164 2157 1936 623 208 126 71
4, 2752 2769 987 703 269 169 94

Lazarevi¢, D., Josip, D. (2017): Iterated Ritz Method for solving systems of linear algebraic
equations, GRABDEVINAR, 69 (7), 521-535
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PhD reserch

« Shape-dependant structures (cable-nets) — potential implementation of
the proposed solver in the field of form fining.

* Implementation of the iterated Ritz procedure in algorithms for solving
nonlinear system of equations (Newton’s method or nonlinear LS).

* Inexact Iterated Force Density Method — integration of the novel solver.

« Comparison of results obtained using different methods.

r
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Inexact Ilterated Force Density Method
for cable-nets

« Improved version of an iterative algorithm
operating on the force densities in order to attain
target lengths and forces of cable-net bars.

« Based on “mixed formulation” consisting from the
FDM that is iteratively used by recalculating FD
coefficients and conjugate gradients used to solve
the system of linear equations.

« Time reduction - achieved by optimizing, in each
iteration step, accuracy for solving the system of
linear equations.
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"Mixed formulation” Approach

step k
) FD coefficient g;; = 1.0
Maurin, M., Motro, R. (2001) : EQUILIBRIUM .
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Inexact Newton

To provide a balance between the accuracy of the solutions of
method

linear systems and the amount of computations done in single

step of the outer loop.

Teq = Min (Ti,%) fora=|A™1|
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This research is concentrated on a choice of the termination rule that will prevent the accuracy

of linear solutions from to quickly becoming unnecessarily high, at the same time retaining the
convergence of the iterative force density method.
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step k

N T tolerance for solving linear
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Name Acronym Heference
st finess matrix methods (SM)
natural shape finding** Haug & Powell {m7z), Argyris etal. (vg7a) Meck 8 Xia (1999)
nonlinear displacement analysis approach Wu et al, (1p84)
od* Tan {198g), Tabarrok & Oin (rgoe2),Li & Chan (2004)
geometric stiffness methods (GSM)
grid method** Siev (106, 1063)
: FOIM Linkwitz & Schek (1971), Schek (w74), Singer (1995
assumed geometric stiffness method,
itemtive smoothing technigue, and G5M Haber & Abel (1082)
stress ratio method SEM Mouri-Baranger (2002)

surface stress density method SSDM Maurin & Maotro (1597, wol)
upaﬁ telere e strategy 813 F emnger T T (490

natural force density method MWFDM Panletti (2006), Pauletti & Pimenta (2008)

maodified force density method Zeng & Ye (zoo6),Ye etal. (2012)

multi-step torce density method

with force/stres adjustment MEDEMEDS  Sincher etal (2007)

improved nonlinear force density method INFDM Kiang ¢t al {2ma)

extended updated reference strategy X-URS Dieringer et al {2013)

nonlinear force density method Koohestani {2014)

maodified non ree density method MMEDM Xu et al (2015)
minimization methods

energy methogds Buchholdt et al {wos)

energy minimiation® Zhang & Tabarrok (woew ) using Brakke (1902)

minimum potential energy method Yousel et al, {20030.0b)

shape minimization® Arcaro & Klinka (2009)

extended force density method EF[IM* Mk & Bawaguchi (zomn)

functional minimization® Bouzidi & Levan (zo13) using Brakke (1992)
dynamic equilibrinm methods

dynamic relaxation method DE/DEM Barnes (1977, 1088, wog)

particde-spring systems Ps Kilian & Ochsendor! {2o05) Bhooshan etal. (2014)

vector form intrinsic finite element method  VFIFE Zhao (2012)

fimite particlk method FPM Yang et al. (zo14)

From: D. Veenendaal (2017): DESIGN AND FORM FINDING OF FLEXIBLY FORMED CONCRETE SHELL

STRUCTURES

~
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Analogy between FDM and displacement method

 |IASS 2012
P. Gidak, K. Fresl: Programming the Force

Density Method Di IVI

« DiM N
the computer code for solving frame
structures by displacement method has l
been modified to implement force density oo E s T
method
stiffnes cofficent 4y q "r8
stiffnes matrix 4wy system matrix (D = C'QC)
displacemnts 4sssssp Nodal coordinates

™
same nodal conectivity

T,mmTffﬂ| |
3
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Example 1
Minimal net with rigid supports

46 cables Conjugate gradient method Inexact
529 free nodes Lu ®) *) _ k)
x, =0 X, =X, IFDM
Outer loop 576 576 576 557
Ex. 1
Inner loop 78 240 34 489 16 201

S, =1
7o =10""
Teq =5-10"
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Net over octogon

Example 2
90 cables
832 free nodes
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The lengths of edge cable bars
and lengths of bars of "ridge”
and "valley” cables are

specified as arithmetic means Conjugate gradient method
of the lengths obtained in the L < =0 <) = gD Inexact IFDM
. 0 0 n
first step.
Outer loop 208 299 300 300
I Ex. 2
Sinner = 1 | I
nner foop 146 527 20982 6793
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Unstrained lenght constraint

» Third Scheck’s structural requirement -
unstrained length constraint

« Langrange multipliers — slow
convergence, minimisation problem
turned into saddle point problem

« Extension of proposed iterative
algorithm

1.0

Fresl, K., P. Gidak and R. Vranci¢ (2013): Generalized

minimal nets in form finding of prestressed cable nets.
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/ INPUT: OB.. file /

!

/ Boundary conditions, initial force densities /

}

Required forces and lengths, termination criteria (t;, 7;),
tolerance for solving linear system .,

FORMULATION OF SYSTEM OF EQUATIONS Inexact Iterative FDM
withfnrcedensities .‘_._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._E
SOLVING SYslﬁrthrEﬁnglous using CG e e e e I e B e JI_I
Teq DENSITIES g ¥
l S, W _ aenly f
CALCULATION OF BAR LENGHTS AND FORCE TERMINATION NO (k) _ o) _“if - o0 _ p(e-1) bf b
< VALUES > g CRITERIAS -~ > T T g1 Gy = U e
SATISFIED " f— ;
o AaBusSy :
i Y (ABey ST )l
YES i ;
i i ! i
OUTPUT: node RECALCULATION OF :
coordinates, force values TOLERANCE & H‘

%) = min (IU‘_”, max (rﬁ"],r{"],rﬂ,‘ ],Tﬁ.q))
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Saddle-shaped example

Unstrained length values are assigned to all internal bars as lengths obtained in the first iteration.

. ground—plan area [0,40]?

7, =107
7, =110
AE =100

force range 0.2 - 0.4

sss h
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>?'</ “'.*',.*'f.-; s L ety LU cGM Inexact
E .// _//,. '.(\.-1:' / . s | 4 3 * o~y ng) =0 xgk) _ Xflk—l) IFDM
| LN Outer loop | _ 238 238 238 238
E 0 %0y, 5/smax Inner loop 25248 5632 2830
T ..,. / ."‘/‘_7.‘; 7
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Saddle-shaped example CcGM Inexact
LU ng) =0 Xf)k) — X(k—l) IFDM

Outer loop 48 48 48 48
Inner loop 6130 3238 1442

. Minimal length from the first
iteration lo = 1.667

7, =10 1
i .
=
7, =110 !
®
.
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LR R A N I A S A A ) y

force range 6.4 — 67.4

y
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Loop example
CASE 1

Force constraints

Lenght constraints

Unstrained length
constraints
rest of the inner bars

ground—plan area [0, 20]?

edge cables and loop

selection of inner bars
according to scheme

inner support (10, 10, 10)

=10
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CASE 1
Unstrained lengths assigned locally
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CASE 1

Unstrained lengths assigned locally

CGM

LU Inexact
xf)") =0 Xf)k) = X;/H) IFDM

Outer loop 15 15 15 17
Inner loop 3131 2106 1390
Srest = 1
Ty = 107
7, =107
r,, =10
AE =100

force range 0.7-20
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CASE 2

Unstrained lengths assigned to all inner bars

LU cGM Inexact
ng) =0 ng) - Xikfl) IFDM
Outer loop 95 95 95 95
Inner loop 20274 9554 6596
7, =107
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* interactive procedure
* no unique solution

b K
are oo ;‘0

oo %%
0 0.090‘

N

%0 o 2t 2% %

. f—
ﬁ!” Supported by Croatian science foundation rl- Faculty of Civil Engineering, University of Zagreb, Croatia



Thank you for your attention!
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