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Topic description/ Abstract

Inexact Iterated FDM is an extension of the force density algorithm, originally used
for form finding and internal force evaluation of tensile structures. The method is
an improved version of an iterative algorithm operating on the force densities in or-
der to attain target lengths and forces of cable-net bars. Improvements are aimed
to be made in two segments. First, acceleration of the computation by relaxing the
accuracy of the procedure in each iteration step maintaining it high enough not to
compromise the convergence. Second, greater flexibility by introducing unstrained
length constraint in addition to force and length constraints from initial set up of
the algorithm.

Set of constraints allows user to manually influence the appearance of the final
solution and enables further integration of the method into the interactive environ-
ment for form finding. The proposed algorithm is adjusted to COMPAS framework
for “computational research and collaboration in architecture, structures and digital
fabrication” and can be used in Rhinoceros.
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Figure 1:Flow chart of the Inexact Iterated FDM.
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Method

“Mixed formulation” based method, consists of the force density method that is it-
eratively used by recalculating force density coefficients in each step and conjugate
gradients are used to solve the system of linear equations. The goal of the method
is to reduce the number of iterations, and consequently the time, by optimizing in
each iteration step, accuracy for solving the system of linear equations. In that way,
inspired by Inexact Newton method, procedure provides the balance between the
accuracy of the solutions of linear systems and the amount of computations done
in single step of the iteration. Extension of the method enables assignment of un-
strained lengths without introducing Lagrange multipliers, in addition to force and
length constraints.

Results

Extensive numerical experiments show that the proposed method is almost always
efficient and robust, although there are cases in which the efficiency strongly de-
pends on constants in the proposed termination rule. The proposed rule for relax-
ation of accuracy is not the only one possible, so there still exist areas for further
research and development.
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Figure 2: Saddle shaped example with force constraints and octagon shaped
example with force and length constraints.
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Figure 3: Two approaches to obtain high point cable net with uniform force distribution, by assigning length, unstrained length or force constraints.

Future Work

The oncoming step in research development is conduction of time measurements
and comparisons of results to nonlinear FDM. Further extension to membrane el-
ements is expected. Described research is part of the project Novel, Efficient Iter-
ative Procedure for the Structural Analysis that proposes new iterative method for
solving systems of linear equations and obtained numerical models are intended to
serve for testing of the proposed procedure in application on nonlinear systems of
equations.
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