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Abstract
The analysis and prediction of the dynamic response of a nonlinear system can be very de-
manding because, apart from the primary resonance response, the sub- and super-harmonic 
responses can be induced, and if natural frequencies have integer ratio internal resonance 
is also possible. Mathematical analysis of such system usually requires the use of an asymp-
totic methods and numerical procedures. The paper presents the applications of analytical 
and numerical methods to nonlinear cable response, and discussion on both approaches is 
given. 
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Analiza nelinearnih oscilacija: analitičke naspram 
numeričkih metoda – primjena u dinamici kabela
Sažetak
Analiza i predviđanje dinamičkoga odziva nelinearnoga sustava zahtjevan je zadatak, jer se 
osim primarne rezonancije mogu inducirati subharmonijski i superharmonijski odziv, a u slu-
čaju cjelobrojnoga omjera prirodnih frekvencija moguća je pojava unutarnje rezonancije. 
Iznimno složena matematička analiza obično zahtijeva primjenu asimptotskih metoda te nu-
meričkih postupaka proračuna. U radu je predstavljena primjena analitičkih i numeričkih me-
toda u analizi nelinearnoga odziva kabela, te su razmotrene prednosti i mane oba pristupa.

Ključne riječi: nelinearno titranje, asimptotske metode, numerički postupci, kabeli
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1. Introduction

Today, scientists in the engineering sector have dedicated a lot of effort to reduce 
the number of approximations being introduced in mathematical model because 
linear analysis have become insufficient to describe the behaviour of the physical 
system adequately. One of the main reasons for modelling a physical system as a 
nonlinear one is that totally unexpected phenomena sometimes occur in nonline-
ar systems, phenomena that are not predicted or even hinted at by linear theory. 
Development of new methods and improvement of existing techniques have ena-
bled research of these phenomena. One of the important aspects of nonlinearity 
are certainly nonlinear vibrations. Several methods are available for the solution of 
nonlinear vibration problems, like approximative analytical techniques, graphical 
procedures, and numerical methods. In civil engineering, nonlinear vibrations occur 
in many structures, especially those that are in their nature extremely flexible, low 
weight, and with low damping such as cable-stayed bridges or cable nets. Given 
the many analytical and numerical methods available today, this paper mentions 
several that are often used in the analysis of nonlinear cable vibrations. Analytic 
analysis of the nonlinear dynamic response is obtained by using a classical pertur-
bation procedure such as the method of averaging and method of multiple scales 
(MMS). These methods can be directly applied to partial differential equations 
[1,2,3], though the mathematical process itself can be more involved depending on 
the possible resonances of system. A more commonly used approach is performing 
space discretization by first applying the Galerkin reduction to obtain a system of 
ordinary differential equations to which perturbation analysis is applied for deter-
mining time-dependent functions [4]. By using analytical methods, it is possible to 
determine solutions in stable or unstable domains. Complex nonlinear responses 
can also be determined numerically; however, such models can only include certain 
bifurcation points because the numerical integration of the solution can only be de-
termined in a stable domain [5]. The first section of paper presents the comparison 
of basic philosophies of both approaches without explaining the mathematical pro-
cedure needed to obtain solutions. After which the examples of relevant research 
in cable dynamics obtained by analytical and numerical methods are displayed, and 
some of advantages and disadvantages of methods are discussed. 

2. Basic philosophy

The solution obtained by perturbation methods is formed as an expansion in which 
known solution, ie. solution of linear problem is supplemented by terms that repre-
sent a small corrections [6-9]. The function expansion is formed using the small per-
turbation parameter ε. Corrections need to ensure that the first correction is small 
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compared to the basic unperturbed solution, then that second is small compared to 
the first correction and so on, all in the limit of small ε [6]. Ordering is the only rule 
that need to hold-up for the implementation of the perturbation procedure and the 
construction of the asymptotic solution. By formation of perturbation hierarchy a 
system of equations suitable for successive solving is formed. The usual procedure 
for implementing a perturbation process is the formation of a nonlinear algebraic 
or differential equation in a non-dimensional space, after which a small parameter 
ε is chosen based on which a perturbation solution is formed. However, there are 
also cases when a small parameter that would be suitable for ranking does not 
appear explicitly in the equation and it is necessary to model the physical system 
adequately. Physical understanding of the nature of problems in the modelling pro-
cess is crucial for the proper formulation of a mathematical problem. Scaling of dif-
ferential equation terms can have a decisive influence on the structure of the final 
asymptotic solution with clear connotations on accuracy and physical meaning [7]. 
In this case we can talk about the ‘artificial’ parameter of the popularly called ‘book-
keeping parameter’ [8-10]. This parameter introduces an implicit assumption of the 
influence of nonlinear coefficients, damping and excitation on system response [7]. 
Table 1 gives the recommendations for scaling in the analysis of parabolic cable 
dynamics at primary, subharmonic and superharmonic resonance [1].

Table 1. Order of first occurrence of contribution in the perturbation equations

Contrary to asymptotic methods, the application of numerical methods in commu-
nity of engineers and scientist is common use. Generally, for the computation of 
dynamic response of nonlinear system requires discretisation in space and time 
domain, and solution is obtained in incremental form. Finite elements of finite dif-
ferences are used to describe nonlinear model in space domain. For example, by 
using finite elements to model cables several types of elements can be employed: 
axial, parabolic or catenary finite element, all comprising geometric stiffness matrix 
taking into account nonlinear characteristics of physical system. Catenary elements 
have some advantages, such as requiring fewer numbers of elements, but it also 
has a disadvantage: it needs to employ iterative procedures to obtain stiffness ma-
trix [11]. Time domain integration is usually carried out using predictor-corrector 
technique or Runge-Kutta method. Final form of incremental solution is highly de-
pended on space discretisation and time step.

excitation damping quadratic cubic

ε
ε2

ε3

S2 S3

S2 P S2 S3

P P S3 P S2 S3

(P: primary; S2: 1/2-sub, 2-super; S3: 1/3-sub, 3-super) [1]
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2.1. Damped linear vibrations

To present basic idea of asymptotic and numeric methods, we will use advan-
tage of knowing exact solution of differential equation of free damped vibra-
tion:

	

The basic perturbation procedure, the straightforward expansion, consists of an 
idea that the final solution can be written in the form of a expansion with a small 
perturbation parameter ε:

	

In the case of low damping, the value of damping parameter can be used for per-
turbation scaling parameter ε.
The basic numerical integration is usually presented by Euler method, which gives 
incremental solution:

	

Comparison of this two methods with exact solution is shown in Figure 1. For as-
ymptotic method, it can be seen that all the solutions match the exact response 
in the beginning of the response, but as time is increasing more correction terms 
are needed to take into account. The breakdown in the straightforward expansion 
is due to its failure to account for the nonlinear dependence of the frequency of 
the system on the nonlinearity. A number of techniques that yield uniformly valid 
expansions have been developed [8]. Some of those techniques are MMS and 
method of averaging also known as van der Pol method [9]. These techniques 
take into account that changes due to nonlinearities of the system do not happen 
at same time rate. In order to consider this by MMS, it needs to represent the 
response as a function of multiple independent variables, or scales, instead of 
single variable [8]:
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In which the number of independent time scales depends on the order to which the 
expansion is carried out. Solution obtained by MMS for the expansion ε2 is shown 
on Figure 2a.

Numerical solutions for different time steps are shown in Figure 1d, e and f. All 
responses show the growth of error that ultimately leads to a significant deviation 
from exact solution. Error can be further reduced by step reduction but that only 
increases calculation time, much more effective is to use some of the higher order 
methods. For example, the solution using the explicit Runge-Kutta method is shown 
in the Figure 2b. As can be seen, both procedures give satisfactory results in the 
case of linear system response.

Figure 1. Response function. (a-c) Straightfoward expansion; (d-e) Euler method
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3. Cable dynamics

Nonlinear responses of a parabolic cable are of theoretical interest in applied 
mechanics and an archetypal model of various phenomena in dynamics [1]. Par-
tial differential equations of cable motion are usually reduced by the Galerkin 
method to ordinary differential equations (ODE) that contain quadratic and cu-
bic nonlinearities produced by the initial curvature and stretching. Frequency 
response curve that characterise cable response to primary resonance is dis-
played in Figure 3a. The figure shows asymptotic solution obtained by MMS 
method and two numerical solution. Solutions labelled as NI determinated by 
direct numerical integration of reduced ODE in Wolfram Mathematica. Calcu-
lation starts with homogeneous initial conditions, and in the subsequent cal-
culations after a steady-state amplitude is achieved, the excitation frequency/
amplitude is changed. Other numerical model of cable is obtained by space 
discretisation of system using finite differences, and predictor-corrector algo-
rithm is used for integration in time domain. The results of the finite difference 
model for homogeneous and nonhomogeneous initial conditions (FD-hic and 
FD-nic, respectively) are displayed. Nonhomogeneous conditions are set in the 
vicinity of the steady state determined by the MMS process. It can be seen that 
the results are in good agreement in the region where solution is unique but 
in the region where response depends on nonhomogeneous initial conditions, 
the numerical models have difficulty describing high-amplitude vibrations, and 
solution leads to curve of low amplitude vibrations. Characteristic stream plot 
of vector field of the initial amplitude and phase is displayed in Figure 3b. All 
initial conditions starting in the shaded area result in high-amplitude response. 
However, in the regions where stable and unstable curve are approaching each 
other the stable node (P1) and saddle point (P2) are approaching. Since numeri-
cal models are very sensitive to any perturbation in the system, the response by 
using these models usually led to low-amplitude vibration (P3).

Figure 2. Response function. (a) MMS; (b) Runge-Kutta method
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Frequency-amplitude curve due to primary resonance is well known and analysis of 
the solutions with analytical or numerical model gives good prediction of the final 
values of amplitude. Analysis that is more complicated is in the case when nonlin-
ear interaction happens in the system response. Figure 4 display a frequency-am-
plitude curve for the case of interaction due to primary and parametric resonance. 
Frequency-amplitude curve are constructed for amplitudes a1 and a2 of generalized 
coordinates and ws and wc that denote the maximum value of nodal displacement 
in the middle and at a quarter of the cable span, respectively. For the construction 
of these curves several numerical methods were used.
Only MMS solutions that displayed by continuous line is fully analytical solution. 
In the case of interaction (MMS – INT) system of equations that is obtained in ana-
lytical form is solved by numerical methods using Wolfram Mathematica. Besides 
already mentioned NI and FD model, finite element (FE) results obtained using 
SAP2000 are shown also. All of these numerical models are used to verify analyti-
cal expressions obtained by MMS technique. In these frequency-amplitude curve it 
is important the emphasize solution between two Hopf bifurcation labelled by H1 
and H2. It is worth noting that in this region for specific initial conditions, numerical 
models NI and FD have a dynamic response [4]. Thanks to numerical models, it was 
concluded that in that region a regular system response can exist with frequencies 
that match the primary and parametric resonance. A slight variation in the ampli-
tude causes this branch to be classified as unstable, thus this response is unstable 
only due to nonexistence of a steady state [8].

Figure 3. �a) Frequency-amplitude curve at primary resonance for constant excitation amplitude [12], 
b) initial conditions vector field [12]
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By using analytical analysis, the regions of nonlinear resonance in excitation pa-
rameter space can be easily explored (Figure 5). Boundary curves that are obtained 
by analytical expressions allow definition of histeresis, and high- or low-amplitude 
regions while results of numerical models require in depth analysis of time-history 
function response (steady-state amplitude, Fourier spectrum). 

Figure 4. �Frequency-amplitude curves [4]. a) parametric resonance amplitude; b) primary resonance 
amplitude; c) maximum displacement in middle of cable span; d) maximum displacement 
in quarter of cable span
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Figure 5. �Resonance region due to interaction of primary and parametric resonance. a) boundaries 
obtained using method of averaging and numerical simulations [13]; (b) MMS [4]

4. Conclusion

It is important to note that analytic asymptotic methods are valid in specific fre-
quency domain and for specific ordering in formation of perturbation hierarchy. De-
manding task in the analytical approach is description of the model by continuous 
functions. This implies that only simple models can be analysed. However, since use 
of analytic modelling is not to describe a real structure even in linear theory, but 
for in-depth understanding of a certain nonlinear phenomena, we can argue that 
their use is justified or even necessary. Complex behaviour require using some kind 
of theoretical method, though combined with selected numerical tools, rather than 
generic computer simulations on large discrete models [1]. The most reliable re-
sults on theoretical analysis of nonlinear oscillations are achieved by simultaneous-
ly using analytical and numerical methods. Therefore, the analytical model offers a 
framework for describing the results obtained by numerical methods.
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