Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop

Behavior of dual steel frame with innovative double skin cold-formed steel concrete composite shear wall

Emanuel Krupa-Jurić, Ivan Lukačević

University of Zagreb/Faculty of Civil Engineering http://www.grad.unizg.hr/lwtfloor

Seismic design

Plastic behaviour

Energy dissipation

- Modern codes —— dissipation of seismic energy through plastic deformation
- Capacity design

REPAIR?

Elastic behaviour

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Dual systems

- The dual system consists of:
- 1. Moment resisting frame (MRF)
- Remains elastic
- Enables recentering of the structure
- Enables stability during repair

2. Bracing system

- Replacable
- Ductile
- Dissipates seismic energy trough yielding

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Dual systems – Seismic links

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Dual systems – Shear panels

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

- Analysis was conducted in Abaqus Explicit solver Idea: Exploitation of advanteges of both materials
 - **Steel**: ductility
 - Concrete: stiffness, stability of corrugated steel sheets

The shear wall

Concrete Two cold formed corrugated steel sheets

Jniversity of Zagreb Faculty of Civil Engineering

http://www.grad.unizg.hr/lwtfloor

LWT-FLOOR Project

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Numerical analysis - Results

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Numerical analysis - Results

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Numerical analysis - Results

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Numerical model - No. 1

Steel Sheets – shell element Concrete – solid elements Shear connection – Tie constraint

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

PUSHOVER (N2) – SAP 2000

- To test the dual behavior of the system Pushover analysis is performed
- Pushover analysis gives us key information on behavior of the system:
- Collapse mechanism
- Capacity curve relation between base shear and roof displacement
- Overstrength ratio
- Behavior factor
- GOAL: to show that moment-resisting frames remain elastic while composite shear walls yield and thus dissipate seismic energy

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

PUSHOVER (N2) – SAP 2000

k/Su	pport Direction	al Properties			×	
sentif	lication					Z
Property Name		20	20			P
Dir	ection	U2	02			5
Tur		Mutthe	MutLinear Elastic			
Me	ni inaar	Yes	Yes			
rope	rties Used For Li	near Analysis Ca	ses			
Effective Stiffness				1115324.		
Effective Damping				0,		
hear	Deformation Los	ation				
Dis	tance from End-	1	-	2.1		
ub-l	.inear Force-Def	ormation Definitio	'n			
	Displ	Force	-		-	
1	-1,000E-05	-1,		N	-	
2	0,	0,			-	
3	1,160E-04	43,				
4	8,560E-04	252,				
Order Down		Completion of the	100	Add Daw 25		
order nows		CONCRETE PSP W		MUG NOW 21		

- Plastic hinges, hinges defined with M_{pl},
- assigned to each beam and column -Nonlinear behavior of the material is included while geometric nonlinearities were not (structure is not sensitive to $P\Delta$ effects) Pushover is performed with the displacement control

method

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Results

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Conclusion

- During the analysis no plastic hinges appeared in beams or colums which confirms the dual behavior of the analysed system
- Shear walls yielded as predicted
- Global behavior of the system is ductile
- Obtained behavior factor is 5 which means that elements can be designed using much smaller forces thanks to the ductility of the system
- Composite shear wall work in progress

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop

Behavior of dual steel frame with innovative double skin cold-formed steel concrete composite shear wall

Emanuel Krupa-Jurić, Ivan Lukačević

University of Zagreb/Faculty of Civil Engineering http://www.grad.unizg.hr/lwtfloor