Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop

Experimental study on the performance of steel and composite plate shear walls under cyclic behaviour

Ivan Ćurković, Davor Skejić, Janko Košćak, Ivan Lukačević

University of Zagreb/Faculty of Civil Engineering http://www.grad.unizg.hr/lwtfloor

Presentation Agenda

- Steel plate shear walls (SPSW)
- Composite plate shear walls (CPSW)
- Experimental research
- Results
- Conclusions

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Steel plate shear walls (SPSW)

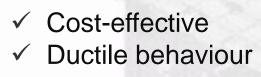
• **USE**: high lateral loads due to wind or earthquake

• **COMPONENTS:** frame (HBE and VBE) + steel infill plate

• LOAD TRANSFER: dominantly through tension diagonal/field in the steel infill panel (in post-buckling phase)

• **STRENGHT:** only steel infill panel (frame resistance is not accounted for)

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project <u>http://www.grad.unizg.hr/lwtfloor</u>



HBE

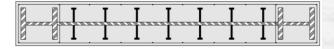
fy tu

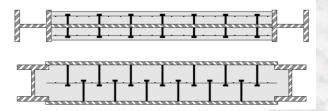
• INCREASE OF STEEL INFILL PANEL STRENGHT

- **pre-buckling**: thicker plate, various panel types, plate stiffening ...
- **post-buckling**: thicker plate, higher material strength, widening tension diagonal...

Tension field in infill panel

• SPSW STRENGTH: $V_n = 0.42 \cdot t_w \cdot L_{cf} \cdot f_y \cdot \sin 2\alpha$


University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor Increased requirements on boundary members


Composite plate shear walls (CPSW)

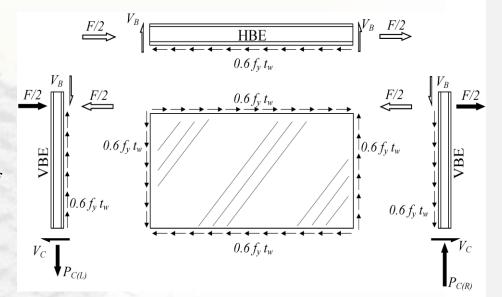
Decrease requirements on boundary members by yielding of the plate in shear before buckling

> USE: high lateral loads due to wind or earthquake

• **COMPONENTS:** frame (HBE and VBE) + composite infill panel (RC and steel plate with discrete connection)

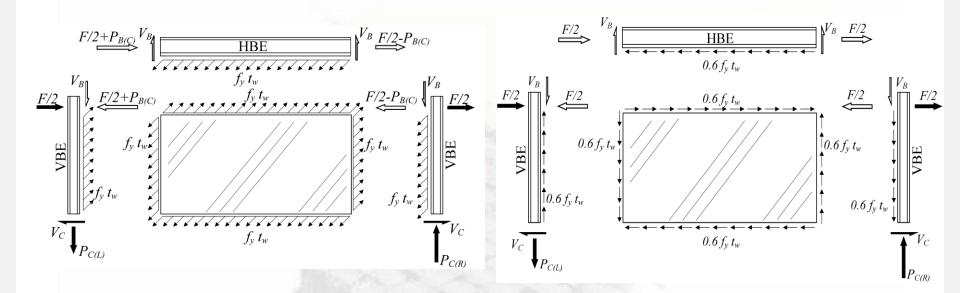
• LOAD TRANSFER: dominantly through shear yielding of steel plate (in pre-buckling phase)

• **STRENGHT:** only composite infill panel (frame resistance is not accounted for)


University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Composite plate shear walls (CPSW)

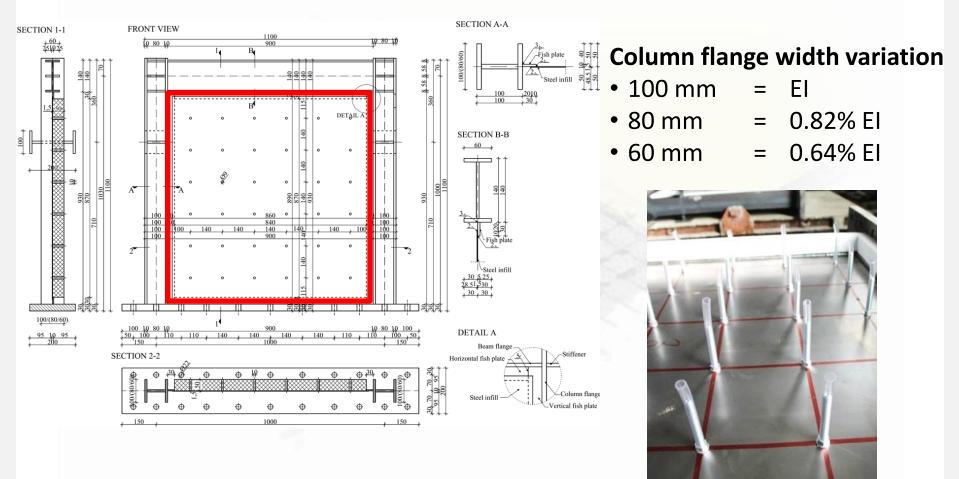
$$V_n = \frac{f_y}{\sqrt{3}} \cdot t_w \cdot L_{cf} \approx 0.6 \cdot f_y \cdot t_w \cdot L_{cf}$$



University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

SPSW vs. CPSW

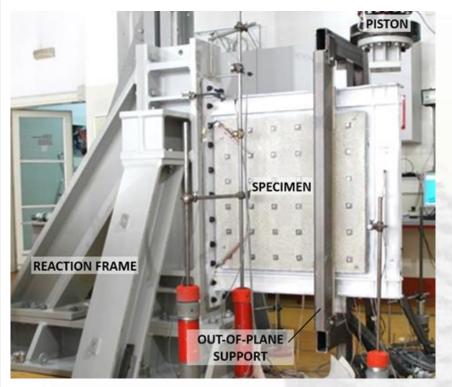
• Prevent column "pull-in": $I_c = \frac{0.0031 \cdot t_w \cdot H^4}{L}$


University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Experimental research

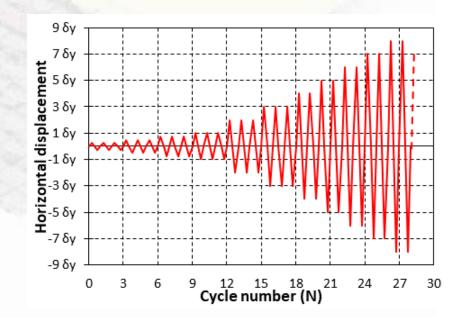
Specimens

• 3x F, 3x SPSW, 6x CPSW



University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Experimental research

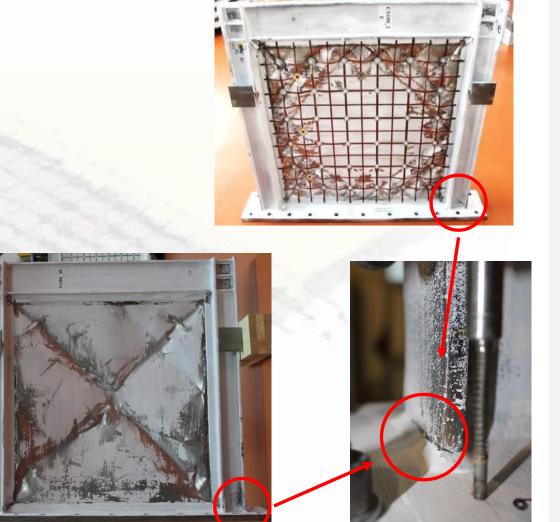


Test setup

- Rotated position 90°
- Fixed column base
- OOP support

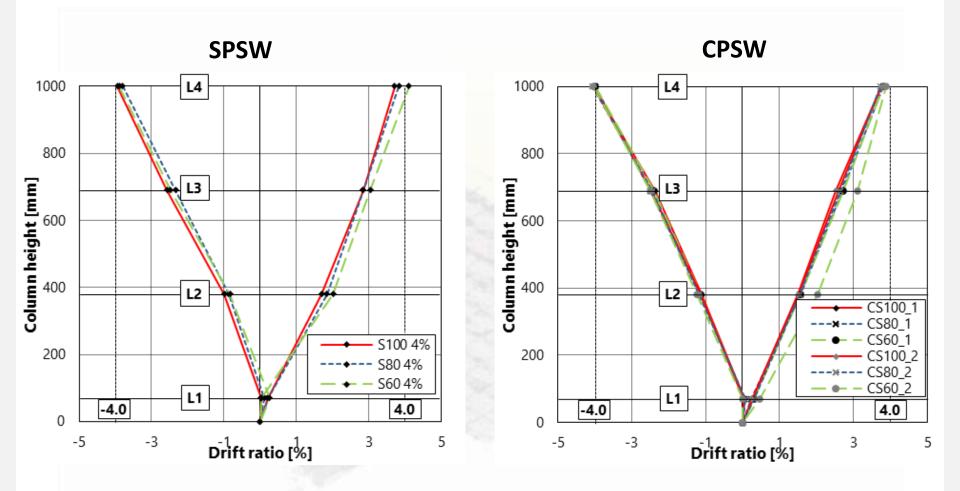
Loading protocol

- Quasi-static
- ECCS and ATC-24 protocol
- Yield displacement: 3 mm (SW) and 12 mm (MRF)
- Displacement controlled

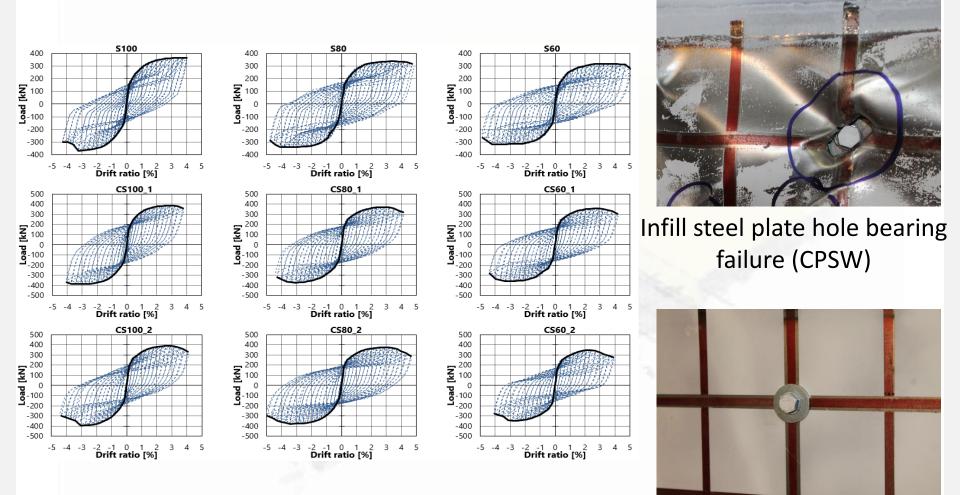


University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

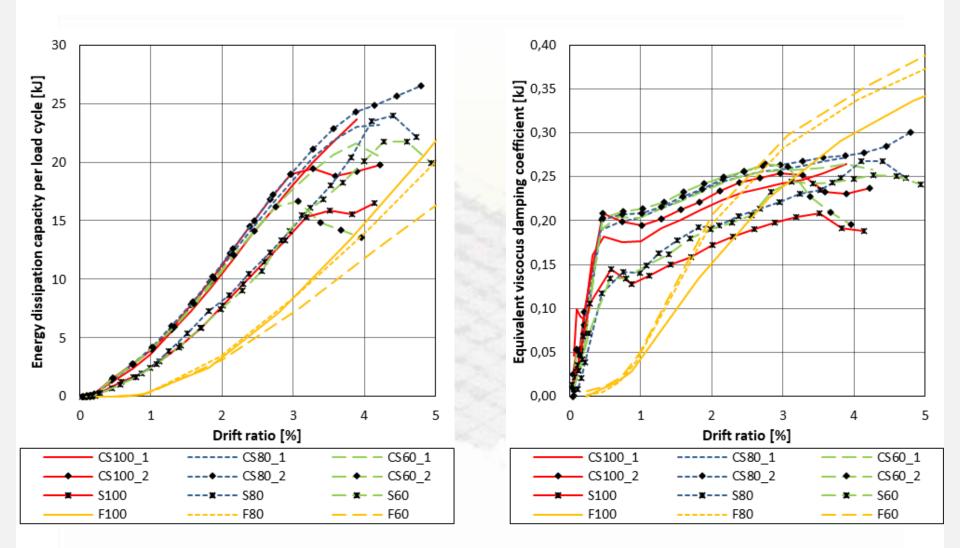
|--|


Spec. group	Initial stiffness	Ultimate strength		Maximum displ.	
	[kN/mm]	[kN]	[mm]	[kN]	[mm]
F100	13.7	208	68.7	159	80.3
F80	12.3	178	75.1	157	84.5
F60	10.7	137	51.8	120	64.7
S100	100	371	33.8	323	42.8
S80	75	342	36.0	272	49.4
S60	89	321	33.3	243	51.4
CS100	120	396	30.2	319	42.3
CS80	104	379	30.2	279	47.1
CS60	107	359	27.6	267	42.9

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor



University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor



University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Conclusions

- Infill panel has significantly greater influence on the initial stiffness of the shear walls than the flexural stiffness of the column.
- Experimental results showed that reduction of column flexural stiffness by 36% did not have adverse impact on cyclic shear wall behaviour, which were able to tolerate 4% drift ratios before failure
- Column "pull-in" column deflections of CPSW were lower than the ones of SPSW.
- Overall experimental results indicate that column flexural stiffness requirement can be reduced for CPSW, and maybe even entirely omitted for SPSW and CPSW.
- Design procedure of the conection between steel infill plate and RC panel has to be revised to increase energy dissipation capacity of CPSWs, especially when prefabricated RC plates are used.

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop

Experimental study on the performance of steel and composite plate shear walls under cyclic behaviour

Ivan Ćurković, Davor Skejić, Janko Košćak, Ivan Lukačević

University of Zagreb/Faculty of Civil Engineering http://www.grad.unizg.hr/lwtfloor