Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop

Analysis of Demountable Shear Connections in Cold-formed Steel-Concrete Composite Beams: A Finite Element Approach Validated With Experimental Data

<u>Vlaho Žuvelek</u> | Ivan Ćurković | Ivan Lukačević | Andrea Rajić vlaho.zuvelek@grad.unizg.hr

University of Zagreb/Faculty of Civil Engineering http://www.grad.unizg.hr/lwtfloor

Agenda

- Introduction
- Experimental study
- Finite element (FE) model
 - Geometry, boundary conditions and loading
 - Mesh, interactions and analysis method
 - Material characteristics
 - Validation of FE models
- Parametric study
- Results and discussion
- Conclusion

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project <u>http://www.grad.unizg.hr/lwtfloor</u>

1. Introduction

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

1. Introduction

Composite built-up cold-formed steel girders (CFS) with a corrugated web and concrete slab

Continuous Development

Composite steel-concrete systems remain a field of continuous development

Material Efficiency

Growing tendency to reduce material usage while enhancing performance

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Phase 1 Base material:

- CFS sheets
- bolts
- concrete
- reinforcement mesh

Phase 2 Investigation the resistance of spot welds

Phase 3

Testing push-out specimens

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

6

Croatian Science Foundation

2. Experimental study

Phase 1

01. CFS sheets

Thickness of tested steel sheets:

- 0.8 mm
- 1.0 mm
- 1.25 mm
- 1.5 mm
- 2.0 mm
- 2.5 mm
- 3.0 mm

BH_30-

BH. S.O. 11

BH. So_12

BH. 3.0.13

LWT-FLOO

RESEARCH PROIFI

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

LWT-FLOO

RESEARCH PROJEC

	<i>f_{cm}</i> [MPa]	E_{cm} [MPa]
Mean value	28.09	29526
St. dev. [%]	2.429	0.281
CoV[%]	8.64	0.95

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop **Croatian Science**

Foundation

NC_08

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop

5.97

CoV[%]

1.84

Phase 2

Combination of sheet thicknesses for spot welds:

- 0.8 mm 0.8 mm
- 0.8 mm 1.0 mm
- 0.8 mm 1.25 mm
- 0.8 mm 1.5 mm
- 0.8 mm 2.0 mm
- 0.8 mm 2.5 mm
- 0.8 mm 3.0 mm
- 1.0 mm 1.0 mm
- 1.0 mm 1.25 mm
- 1.0 mm 1.5 mm
- 1.0 mm 2.0 mm
- 1.0 mm 2.5 mm
- 1.0 mm 3.0 mm
- 1.25 mm 1.25 mm
- 1.25 mm 1.5 mm

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop

- 1.25 mm 2.0 mm
- 1.25 mm 2.5 mm
- 1.25 mm 3.0 mm
- 1.5 mm 1.5 mm
- 1.5 mm 2.0 mm
- 1.5 mm 2.5 mm
- 1.5 mm 3.0 mm
- 2.0 mm 2.0 mm
- 2.0 mm 2.5 mm
- 2.0 mm 3.0 mm
- 2.5 mm 2.5 mm
- 2.5 mm 3.0 mm
- 3.0 mm 3.0 mm

Total: 558 specimens

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

12

Croatian Science Foundation

2. Experimental study

Idea and design of push-out specimens:

- CFS 120x47x3 mm
- Concrete slab 720x600x120 mm
- Profiled steel sheeting 720x600x1.0 mm
- Corrugated web 780x120x1.25 mm
- Bolts M16, steel grade 8.8

WT-FLO

RESEARCH PROIFI

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Fabrication process of bolted shear connection specimens

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Test setup for push-out specimens

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Test setup for push-out specimens

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Analysis and processing of results

 The statistical evaluation of experimental results according to EN 1990 -Annex D and EN 1994-1-1

Specimen	Ultimate force	Slip	Stiffness	
Specimen	P _{ult} [kN]	δ_u [mm]	k _{sc} [kN/mm]	
BCWB_01	260.9	7.31	78.5	
BCWB_02	290.5	5.84	86.2	
BCWB_03	268.4	5.80	73.4	
Mean	273.3	6.32	79.4	
St. Deviation	15.39	0.86		
CoV [%]	5.63	13.62		
Characteristic	226.3* (234.8**)	4.03* (5.22**)		

Note: * according to EN 1990: 2010 ; ** according to EN 1994-1-1:2004

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

- Abaqus Explicit solver (quasi – static analysis)
 - To address geometrical and material nonlinearities

- Bolted shear connection (embedded nuts)
 - Increased stiffness
 - Easier mounting

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop Croatian Scien

Boundary Conditions Symmetric boundary conditions

- Plane orthogonal to the X-axis
- Bottom concrete plane
 - All directions
- CFS top
 - Horizontal directions
- Load
 - Uniform vertical displacement at the CFS top

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop

3. Finite element (FE) model

LWT-FLOOR BESLAKE PROJECT

U2

D

"Load" reference point

U1=U3=0; UR1-3=0

- Interaction
 - Normal behaviour
 - Hard contact
 - Tangential behaviour
 - Penalty friction (0.1, 0.2, 0.3 and 0.7 frictional coefficient)
 - Spot welds
 - Bushing type connectors
 - Elasticity, Plasticity, Damage and Failure characteristics

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Constitutive models

o Steel

 True stress-strain curve adopted based on experimental results

- Concrete
 - Concrete Damage Plasticity (CDP) model
 - Compression failure
 - Tension failure

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

- Validation of numerical models
 - Good agreement between experimental and numerical simulation
 - Benchmark model for parametric analyses

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop Croatian Scien Foundation

LWT-FLOO

RESEARCH PROJEC

Crushing of concrete (cone failure) and development of tensile cracks

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

4. Parametric study

- INT-FLOOR INSLAKE PROJECT
- Varied width (b_o) and height (h_p) of concrete rib across 12 parametric models
- Objective:
 - Investigate influence of different geometries and types of profiled sheeting on ultimate capacity of bolted shear connectors.

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

5. Results and discussion

- Complex behaviour of CFS elements leads to an interaction between multiple failure modes
- Lower concrete rib heights exhibit better shear behavior and resistance compared to higher rib heights in the models
- Different rib heights result in varying shear force distributions
- Slightly better shear resistance observed in certain models with a re-entrant trough profile (RP)

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop

Foundation 350 300 **Fotal force [kN]** 250 200 150 100 OP 60 120 OP 60 150 OP 70 120 OP 70 150 50 OP 80 120 OP 80 150 0 10 12 2 4 14 Slip [mm] 350 OP_60-120 plastic hing Δ=3.4 mm ຍ 200 -ວັ<u>ຍ</u> ສ່ອ<u>ົ</u>ງເຊ plastic hinge Δ=1.8 mm RP RP 50 RP 70 RP 80 120 RP 0 10 12 14 () Slip [mm]

24

5. Results and discussion

- IWT-FLOOR INSTART PROJECT
- The results of the parametric analysis are presented in Table
- All models fulfil ductility classification according to EN 1994-1-1

Models	Ultimate force [kN]	Ductility	Failure mode	Models	Ultimate force [kN]	Ductility	Failure mode
OP_60_120	253.2	Ductile	B-Y-C	RP_60_120	306.5	Ductile	B-Y-C
OP_60_150	307.1	Ductile	B-Y-C.	RP_60_150	324.2	Ductile	B-Y-C
OP_70_120	237.7	Ductile	B-Y-C.	RP_70_120	266.8	Ductile	B-Y-C
OP_70_150	298.8	Ductile	B-Y-C	RP_70_150	265.1	Ductile	B-Y-C
OP_80_120	205.2	Ductile	B-Y-C.	RP_80_120	211.1	Ductile	B-Y-C
OP_80_150	233.7	Ductile	B-Y-C	RP_80_150	236.8	Ductile	B-Y-C

Note: B= bearing in steel sections; Y= yielding of bolts; C= concrete failure

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

5. Results and discussion

- The parametric analysis results were compared with the analytical predictions described in EN 1994-1-1 and prEN 1994-1-1
- Analytical predictions showed notably conservative and unconservative correlations
- Provide insight into the complex behaviour of the shear connection in composite CFS-concrete systems

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

6. Conclusion

- The finite element approach revealed the complex behaviour of shear connections, highlighting the interaction between multiple failure modes that impacts the ultimate resistance of the shear connection.
- Models with a lower rib height exhibited higher shear connection capacity due to a larger volume capacity of the concrete and a more favourable interaction between failure modes, resulting in a stress distribution over several components.
- A comparison with analytical predictions indicated unreliability in predicting the shear resistance of composite CFS-concrete systems.

University of Zagreb Faculty of Civil Engineering LWT-FLOOR Project http://www.grad.unizg.hr/lwtfloor

Project title: Innovative lightweight cold-formed steel-concrete composite floor system Acronym: LWT-FLOOR Project ID: UIP-2020-02-2964 4th LWT-FLOOR Project Workshop

Thank you for attention!

Analysis of Demountable Shear Connections in Coldformed Steel-Concrete Composite Beams: A Finite Element Approach Validated With Experimental Data

Vlaho Žuvelek | Ivan Ćurković | Ivan Lukačević | Andrea Rajić

vlaho.zuvelek@grad.unizg.hr

University of Zagreb/Faculty of Civil Engineering http://www.grad.unizg.hr/lwtfloor